• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 31 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
ZHU Zhiwen, DENG Yanhua. Investigation into Effects of Turbulence Integral Length on Wind Loads Acting on Tall Buildings Using Large Eddy Simulation[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 508-516. doi: 10.3969/j.issn.0258-2724.2018.03.011
Citation: ZHU Zhiwen, DENG Yanhua. Investigation into Effects of Turbulence Integral Length on Wind Loads Acting on Tall Buildings Using Large Eddy Simulation[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 508-516. doi: 10.3969/j.issn.0258-2724.2018.03.011

Investigation into Effects of Turbulence Integral Length on Wind Loads Acting on Tall Buildings Using Large Eddy Simulation

doi: 10.3969/j.issn.0258-2724.2018.03.011
  • Received Date: 27 Jun 2017
  • Publish Date: 25 Jun 2018
  • To investigate the influence of turbulence integral length on the wind pressure value and distribution on the surface of tall buildings and determine the reasonable value of turbulence integral lengths, a large eddy simulation (LES) was conducted under different turbulence integral lengths to represent the wind flow field around the commonwealth advisory aeronautical research council(CAARC)standard tall building model in exposure category B. The obtained results were compared with those from the wind tunnel test. It is found that the LES is a feasible tool to represent the wind flow around a high building and the distribution of wind pressure on the building surface. It is also found that with the increase in the turbulence integral length, the energy of turbulent fluctuation increases, resulting from the deformation of flow average movement; the mean wind speed will decrease, and hence, the turbulence intensity will increase. It is also found that the fluctuation of wind pressure decreases by 15% on the side face, while the reattachment point of separated flow moves forward. Meanwhile, the local peak at the high-frequency range as well as the peak of aerodynamic base moment and torque spectrum decrease. While the Strouhal number of the layer is essentially the same at a height lower than 0.4 times the height of the building, it decreases by 20%-30% with the increase in height, and the drag coefficients of the mean layer decrease by 5%-10%. The results also show that the mean coefficients of the wind pressure in the windward side reduce by 2%-5%, with a decrease of 12%-17% in the crosswind side and leeward side. The investigation further finds that the turbulence integral length has minor effects on correlations of horizontal wind pressure in the windward side and crosswind side in the upwind direction, and the lift on the layer and drag on the layer at a height less than 0.8 times the height of the building. With the increase in the turbulence integral length, the correlation coefficient of the horizontal wind pressure increases respectively by 5%-10%and 15%-25% in the leeward and crosswind sides in the downwind direction, and the correlation coefficient of the drag of the layer increases by 25%-50% at a height above 0.8 times the height of the building. When the adjustment coefficient of the turbulence integral length in exposure category B is 0.4, the results of wind load obtained by LES are more consistent with the test results.

     

  • loading
  • 卢占斌, 魏庆鼎.网格湍流CAARC模型风洞实验[J].空气动力学学报, 2001, 19(1):16-23. doi: 10.3969/j.issn.0258-1825.2001.01.003

    LU Zhanbin, WEI Qingding. An experiment on a CAARC model in grid turbulent flow[J]. Acta Aerodynamica Sinica, 2001, 19(1):16-23. doi: 10.3969/j.issn.0258-1825.2001.01.003
    JR F L H, KAREEM A, SZEWCZYK A A. The effects of turbulence on the pressure distribution around a rectangular prism[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77-78(98):381-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa836f62e461bcf24dce4625a78878a8
    NAKAMURA Y, OZONO S. The effects of turbulence on a separated and reattaching flow[J]. Journal of Fluid Mechanics, 1987, 178:477-490. doi: 10.1017/S0022112087001320
    LI Q S, MELBOURNE W H. The effects of large scale turbulence on pressure fluctuations in separated and reattaching flows[J].Journal of Wind Engineering and Industrial Aerodynamics.1999, 83(1/2/3):159-169. http://www.sciencedirect.com/science/article/pii/S0167610599000690
    Huang S H, Li Q S, Wu J R. A general inflow turbulence generator for large eddy simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(10):600-617. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=407a152c2b96e3ac2cbea00248e6de20
    张兆顺, 崔桂香, 许晓春.湍流大涡模拟的理论与应用[M].北京:清华大学出版社, 2005:4-42.
    罗盘.基于标准模型的风洞试验研究[D].上海: 同济大学土木工程学院, 2004. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y574459
    TAMURA Y, OHKUMA T, KAWAI H, et al. Revision of AIJ recommendations for wind loads on buildings[C]//Structures Congress. Nashville: [s.n.], 2004: 1-10.
    LAKEHAL D. Application of the k-ε model to flow over a building placed in different roughness sublayers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73(1):59-77. doi: 10.1016/S0167-6105(97)00279-1
    MELBOURNE W H. Comparison of measurements of the CAARC standard tall building model in simulated model wind flows[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1980, 6(1):73-88. doi: 10.1016-0167-6105(80)90023-9/
    OBASAJU E D. Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40(2):103-126. doi: 10.1016/0167-6105(92)90361-D
    杨有根.高层建筑的抗风实测分析与大跨度屋盖的风致响应研究[D].长沙: 湖南大学, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1209544
    苏万林, 李正农.湍流对超高层建筑风压幅值特性影响的研究[J].地震工程与工程振动, 2016, 36(3):118-126. http://www.cqvip.com/QK/95364X/201603/669163706.html

    SU Wanlin, LI Zhengnong. Research of turbulent effects on characteristics of wind pressure amplitude on tall buildings[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(3):118-126. http://www.cqvip.com/QK/95364X/201603/669163706.html
    唐意.高层建筑弯扭耦合风致振动及静力等效风荷载研究[D].上海: 同济大学土木工程学院, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10247-2007222853.htm
    陈建兰.矩形截面高层建筑风荷载试验研究[D].武汉: 华中科技大学, 2005. http://cdmd.cnki.com.cn/Article/CDMD-10487-2006038137.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(531) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return