Citation: | WU Shangwen, WU Guangliang, ZHANG Yongji, MENG Zhengbing. Static Recrystallization Behavior of Nitrogen Alloyed HRB500E Steel[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1314-1322. doi: 10.3969/j.issn.0258-2724.20170918 |
HWANG B, SHIM J H, LEE M G, et al. Technical developments and trends of earthquake resisting high-strength reinforcing steel bars[J]. Journal of the Korean Institute of Metals and Materials, 2016, 54(12): 862-874.
|
CHENG M Y, HUNG S C, LEQUESNE R D, et al. Earthquake-resistant squat walls reinforced with high-strength steel[J]. Aci Structural Journal, 2016, 113(5): 1065-1076.
|
SHI G, HU F, SHI Y. Recent research advances of high strength steel structures and codification of design specification in China[J]. International Journal of Steel Structures, 2014, 14(4): 873-887. doi: 10.1007/s13296-014-1218-7
|
DING H, LIU Y, GUO Y, et al. Seismic behavior study on concrete structures reinforced with high-strength steel bars[J]. Building Structure, 2015: 3-34.
|
ALAEE P, LI B. High-strength concrete exterior beam-column joints with high-yield strength steel reinforcements[J]. Journal of Structural Engineering, 2017, 145(7): 305-321.
|
CHEN W, SHI Z, ZHAO Y. Research of HRB500E high-strength earthquake-proof bars produced by VN alloy and MnSiN12 process[J]. Hot Working Technology, 2010, 39(4): 35-39.
|
WINZER N, ROTT O, THIESSEN R, et al. Hydrogen diffusion and trapping in Ti-modified advanced high strength steels[J]. Materials & Design, 2016, 92: 450-461.
|
CHEN W, CAO J, YANG Y, et al. Investigation on the strengthening and toughening mechanism of 500 MPa V-Nb microalloyed anti-seismic rebars[J]. Materials Science, 2015, 21(4): 536-542.
|
CHEN W, SHI Z, ZHAO Y. Strengthening and toughening mechanism of HRB500 anti-seismic rebars with Nb microalloyed and controlled cooling process[J]. Journal of Central South University, 2011, 42(6): 1604-1610.
|
XIANG Y, LAN L, ZHANG C, et al. Composition optimization and mechanical properties control for 500 MPa high strength ribbed bars[M]. [S.l.]: John Wiley & Sons, Inc., 2016: 967-972.
|
ZHANG J, WANG F M, YANG Z B, et al. Microstructure,precipitation,and mechanical properties of V-N alloyed steel after different cooling processes[J]. Metallurgical & Materials Transactions A, 2016, 47(12): 6621-6631.
|
JIAO Z, LIU C T. Ultrahigh-strength steels strengthened by nanoparticles[J]. Science Bulletin, 2017(15): 1043-1044.
|
MIRZADEH H, CABRERA J M, PRADO J M, et al. Hot deformation behavior of a medium carbon microalloyed steel[J]. Materials Science & Engineering A, 2011, 528(10): 3876-3882.
|
PENTTI K L, PERTTULA J. Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method[J]. ISIJ International, 1996, 36(6): 729-736. doi: 10.2355/isijinternational.36.729
|
CHO S H, KANG K B, JONAS J J. Effect of manganese on recrystallisation kinetics of niobium microalloyed steel[J]. Materials Science & Technology, 2013, 18(4): 389-395.
|
MEDINA S F, MANCILLA J E. Static recrystallization modelling of hot deformed steels containing severl alloying elements[J]. ISIJ International, 1996, 36(8): 1070-1076. doi: 10.2355/isijinternational.36.1070
|
ELWAZRI A M, WANJARA P, YUE S. Metadynamic and static recrystallization of hypereutectoid steel[J]. ISIJ International, 2003, 43(7): 1080-1088. doi: 10.2355/isijinternational.43.1080
|
周晓锋. 钒对20MnSi钢的热变形再结晶的影响[J]. 塑性工程学报,2007,14(1): 20-23. doi: 10.3969/j.issn.1007-2012.2007.01.005
ZHOU Xiaofeng. Effect of vanadium on hot deformation recrystallization of 20MnSi steel[J]. Journal of Plasticity Engineering, 2007, 14(1): 20-23. doi: 10.3969/j.issn.1007-2012.2007.01.005
|