• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHAO Renda, WU Debao, WANG Yongbao, JIA Yi, LIAO Ping. Creep Buckling Analysis of Concrete-Filled Steel Tubular Columns[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 468-474. doi: 10.3969/j.issn.0258-2724.20170371
Citation: ZHAO Renda, WU Debao, WANG Yongbao, JIA Yi, LIAO Ping. Creep Buckling Analysis of Concrete-Filled Steel Tubular Columns[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 468-474. doi: 10.3969/j.issn.0258-2724.20170371

Creep Buckling Analysis of Concrete-Filled Steel Tubular Columns

doi: 10.3969/j.issn.0258-2724.20170371
  • Received Date: 09 May 2017
  • Rev Recd Date: 26 Oct 2017
  • Available Online: 23 Feb 2019
  • Publish Date: 01 Jun 2019
  • In order to investigate the influence of concrete creep on the long-term stability of concrete-filled steel tubular (CFST) columns under axial load, based on the energy method and age-adjusted effective modulus method, the long-term stability equations for the critical force of CFST columns with different boundary conditions considering creep and pre-buckling deformation were deduced using an instability criterion. The influence of the critical force and strength of the core concrete were studied. In addition, the value of the current standard and critical loads were compared. The results show that the critical load for creep stability of CFST columns is related to the creep coefficient; CFST columns with the same calculated length but different boundary conditions have the same long-term critical load. The influence of creep on the stability of the column decreased with increasing core concrete strength. When designing CFST columns with low-strength concrete using the current code for the design of concrete structures, additional attention should be paid to the influence of creep buckling. The long-term stability of the critical forces of CFST column was reduced obviously reduced in the first 60 days, which accounts approximately for 80% of the total decline. The bearing capacity of the steel tube tends to be stabilize after 100 days.

     

  • UY B. Static long-term effects in short concrete-filled steel box columns under sustained loading[J]. ACI Structural Journal, 2001, 98(1): 96-104.
    HAN Linhai, LI Wei, BJORHOVDE R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures:members[J]. Journal of Constructional Steel Research, 2014, 100: 211-228. doi: 10.1016/j.jcsr.2014.04.016
    孙宝俊,熊学玉. 钢筋混凝土柱的徐变稳定性[J]. 建筑结构,1994(3): 26-28. doi: 10.3321/j.issn:1000-6869.1994.03.001

    SUN Baojun, XIONG Xueyu. Creep stability of reinforced concrete column[J]. Building Structure, 1994(3): 26-28. doi: 10.3321/j.issn:1000-6869.1994.03.001
    MORINO S, KSWANGUCHI J, CAO Z S. Creep behavior of concrete filled steel tubular members[C]//Proceeding of an Engineering Foundation Conference on Steel Concrete Composite Structures. Irsee: [s.n.], 1996: 514-524
    NAKAI H, KURITA A, ICHINOSE L H. An experimental study on creep of concrete filled steel pipes[C]//Proceedings of 3rd International Conference on Japan Steel and Concrete Composite Structures. Fukuoka: [s.n.], 1991: 55-60
    TERREY P J, BRADFORD M A, GILBERT R I. Creep and shrinkage of concrete in concrete-filled circular steel tubes[C]//Proceeding of 6th International Symposium on Tubular Structures. Melbourne: [s.n.], 1994: 293-298
    BEHAN J E, O’CONNOR C. Creep buckling of reinforced concrete columns[J]. Journal of the Structural Division, 1982, 108(12): 2799-2818.
    DISTEFANO J N. Creep buckling of slender columns[J]. Journal of the Structural Division,ASCE, 1965, 91(3): 127-150.
    BAZANT Z P. Creep stability and buckling strength of concrete columns[J]. Magazine of Concrete Research, 1968, 20(63): 85-94. doi: 10.1680/macr.1968.20.63.85
    林南薰. 混凝土和钢筋混凝土柱的徐变稳定性[J]. 土木工程学报,1987,20(3): 92-94.

    LIN Nanxun. Creep stability of concrete and reinforced concrete columns[J]. Journal of Civil Engineering, 1987, 20(3): 92-94.
    寿楠椿,张巍,竹学叶. 钢筋混凝土压杆徐变稳定性分析的有限元法[J]. 建筑结构,1996(11): 32-37.

    SHOU Nanchun, ZHANG Wei, ZHU Xueye. Finite element method for analysis of creep stability of reinforced concrete compression bars[J]. Building Structure, 1996(11): 32-37.
    BAZANT Z P. Prediction of concrete creep effects using age-adjusted effective modulus method[J]. Journal of the American Concrete Institute, 1972, 69: 212-217.
    王玉银,刘昌永,张素梅. 铰接钢管混凝土圆弧拱平面内徐变稳定[J]. 工程力学,2011,28(3): 198-204.

    WANG Yuying, LIU Changyong, ZHANG Sumei. In-plane creep buckling for pin-ended concrete-filled steel tubular circular arches[J]. Engineering Mechanics, 2011, 28(3): 198-204.
    王振波, 乔燕, 马林. 结构力学[M]. 北京: 中国建材工业出版社, 2014: 275-280
    РЖАНИЦЫН А Р. 结构力学[M]. 刘孝平, 译. 北京: 人民交通出版社, 1990: 203-210
    龙驭球, 包世华, 匡文起, 等. 结构力学教程(Ⅱ)[M]. 北京: 高等教育出版社, 2001: 304-345
    ACI Committee 209.2R. Prediction of creep, shrinkage and temperature effects in concrete structures: 978-0-87031-278-6[S]. Detroit: American Concrete Institute(ACI), 2008
    孙宝俊. 混凝土徐变理论的有效模量法[J]. 土木工程学报,1993,26(3): 66-68.

    SUN Baojun. Effective modulus method of concrete creep theory[J]. Journal of Civil Engineering, 1993, 26(3): 66-68.
    Comite Euro-international Du Beton. Fip model code for concrete structures 2010: Part 5, materials: 0-7277-1696-4[S]. London: Thomas Telford Services Ltd, 1993
    王永宝,赵人达,徐腾飞,等. 钢管混凝土轴压构件徐变简化计算方法研究[J]. 公路交通科技,2016,33(1): 57-62. doi: 10.3969/j.issn.1002-0268.2016.01.009

    WANG Yongbao, ZHAO Renda, XU Tengfei, et al. Study on simplified creep calculation method of CFST members under axial loading[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 57-62. doi: 10.3969/j.issn.1002-0268.2016.01.009
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015
  • Relative Articles

    [1]LI Fuhai, TANG Huiqi, LI Jiyun, LIU Menghui, WANG Jiangshan, CHEN Shuang, XU Tengfei. Concrete Elastic Modulus and Creep Control Based on Dense Packing Theory[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 404-412. doi: 10.3969/j.issn.0258-2724.20210431
    [2]LUO Xun, YANG Jie, TIAN Hongtao, LIU Dagang, WANG Xiaoyong. Characteristics and Calculation Method of Impact Load in Rockburst Tunnel[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1095-1103. doi: 10.3969/j.issn.0258-2724.20220373
    [3]SHEN Caihua, YU Hansen, JIANG Xinyu, TANG Kai, LI Jingwen. Dynamic Coordination Coefficient Method for Critical Buckling Load of Stiffened U-Shaped Steel Sheet Pile[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 555-562. doi: 10.3969/j.issn.0258-2724.20220508
    [4]YANG Chun, WU Hongwei, MO Tingwei, CAI Jian, WU Yi, ZUO Zhiliang, CHEN Qingjun, PAN Guangbin. Shaking Table Test for Structural Model with Inclined Column Transfer System[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 517-525. doi: 10.3969/j.issn.0258-2724.20190104
    [5]CAO Bing, CHEN Junda, DU Yihan, HUANG Bo, HUANG Jun, XIA Junwu. Axial Compressive Properties of Prefabricated Circular Steel Tube Confined Concrete Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1017-1027. doi: 10.3969/j.issn.0258-2724.20180867
    [6]LIU Jian, ZHANG Pengcheng, JIANG Jin, TIAN Yong, LIU Changjiang, CHEN Yuan, ZHANG Shihao, CAO Zhanbin. Axial Bearing Capacity Analysis of H-Section Steel-Reinforced Recycled Aggregate Concrete Filled Circular Steel Tube Stub Columns[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1280-1286. doi: 10.3969/j.issn.0258-2724.20190244
    [7]WANG Luming, LIU Yanhui, ZHU Wenkai, HE Tingjun, KANG Xiangjie. Damage Assessment Method for Concrete-Filled Steel Tubular Columns under Impact Loading[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 796-803, 819. doi: 10.3969/j.issn.0258-2724.20181037
    [8]WANG Zhijie, ZHOU Ping, YANG Jianmin, CAO Xiaochuan, ZHAO Qichao, XU Haiyan, XU Ruining. Instability Properties and Deformation Control Methods of Rocks Surrounding Xigeda Strata[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 757-768. doi: 10.3969/j.issn.0258-2724.20170257
    [9]YANG Yongqing, LI Shiwei, LI Xiaobin, YU Qu. 3D Shrinkage and Creep Effects of Concrete Under Varying Temperature Environment[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 931-936. doi: 10.3969/j.issn.0258-2724.20170256
    [10]XIANG Kai, PAN Yanchong, ZHAO Bi, WANG Guohui. Axially Loaded of Concrete-Encased Concrete Filled Steel Tubular Stub Columns after Fire[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1173-1181. doi: 10.3969/j.issn.0258-2724.2017.06.018
    [11]YANG Yongqing, LU Weiwei, LI Xiaobin, YU Xiaohua. Experimental Study and Prediction Model for Concrete Creep in Ambient Environment[J]. Journal of Southwest Jiaotong University, 2015, 28(6): 977-983,1010. doi: 10.3969/j.issn.0258-2724.2015.06.002
    [12]WU Wenjie, WANG Yuanfeng, MA Yishuo. Creep of Concrete-Filled Steel Tube Arch Bridge Considering Geometric Nonlinearity and Construction[J]. Journal of Southwest Jiaotong University, 2013, 26(4): 645-650. doi: 10.3969/j.issn.0258-2724.2013.04.009
    [13]ZHOU Dong-Hua, SUN Li-Li, FAN Jiang, ZHAO Zhi-Man, LIU Yong-Fang. Effective Stiffness Method for Calculation of Deflection of Composite Beams[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 541-546. doi: 10.3969/j.issn.0258-2724.2011.04.003
    [14]SHEN Yao-xing, ZHAO Zhi-jun, HUA Xu-gang. Stability Analysis of Long-Span Arch Bridge of Concrete-Filled Steel Tubes[J]. Journal of Southwest Jiaotong University, 2003, 16(6): 655-659.
    [15]CHENGui-qing, YANG Yi-ren, QIUJia-jun. Hydrogenerator Rotors: Zero Frequency of Torsional Vibration and Resonance[J]. Journal of Southwest Jiaotong University, 2002, 15(1): 44-48.
    [16]LIU Chang-hong, CHEN Qiu. Optimality Criterion of the Significant Failure Modes of Engineering Structures[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 620-623.
    [17]WANG Shao-jia, GAO Shu-ying. Predication of Efficiency of Railway Anti-Noise Barriers with Statistical Energy Analysis Method[J]. Journal of Southwest Jiaotong University, 2001, 14(6): 645-647.
    [18]XIONG Feng, TONG Qiang, LAI Xi-ling. Matrix Displacement Method for Concrete Filled Steel Tubular Arch Structures[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 480-483.
  • Cited by

    Periodical cited type(3)

    1. 李霄龙,王鹏,王永慧,许蔚,李洛克. 考虑徐变效应多腔双钢板-混凝土组合剪力墙轴压性能研究. 四川建筑科学研究. 2025(01): 41-49 .
    2. 郑凯锋,冯霄暘,衡俊霖,张宇,朱金,雷鸣,王亚伟,胡博,熊籽跞,唐继舜,李俊,叶华文,栗怀广. 钢桥2020年度研究进展. 土木与环境工程学报(中英文). 2021(S1): 53-69 .
    3. 王乐冰,梅新咏,苏杨. 成贵铁路鸭池河特大桥主桥结构设计. 桥梁建设. 2020(S2): 99-103 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 41.4 %FULLTEXT: 41.4 %META: 56.2 %META: 56.2 %PDF: 2.5 %PDF: 2.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %上海: 0.5 %上海: 0.5 %临汾: 0.5 %临汾: 0.5 %佛山: 0.5 %佛山: 0.5 %兰州: 0.5 %兰州: 0.5 %北京: 4.4 %北京: 4.4 %十堰: 0.7 %十堰: 0.7 %南京: 0.5 %南京: 0.5 %合肥: 0.2 %合肥: 0.2 %哥伦布: 1.7 %哥伦布: 1.7 %唐山: 0.5 %唐山: 0.5 %天津: 0.7 %天津: 0.7 %延安: 0.5 %延安: 0.5 %张家口: 2.5 %张家口: 2.5 %成都: 1.2 %成都: 1.2 %扬州: 0.2 %扬州: 0.2 %景德镇: 0.2 %景德镇: 0.2 %杭州: 1.5 %杭州: 1.5 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.2 %济南: 0.2 %漯河: 2.7 %漯河: 2.7 %盐城: 0.2 %盐城: 0.2 %石家庄: 0.5 %石家庄: 0.5 %芒廷维尤: 15.0 %芒廷维尤: 15.0 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 51.7 %西宁: 51.7 %贵阳: 0.2 %贵阳: 0.2 %郑州: 1.0 %郑州: 1.0 %长沙: 1.5 %长沙: 1.5 %青岛: 0.2 %青岛: 0.2 %黔南: 0.2 %黔南: 0.2 %其他上海临汾佛山兰州北京十堰南京合肥哥伦布唐山天津延安张家口成都扬州景德镇杭州沈阳济南漯河盐城石家庄芒廷维尤芝加哥西宁贵阳郑州长沙青岛黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views(564) PDF downloads(12) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return