Citation: | HUANG Nan, LI Jing'an, WEI Lai, LI Shiqi, SU Hong, LÜ, Xianfeng, CHEN Junying, YANG Ping. New Strategies for Developing Cardiovascular Implanted Devices Surfaces with In situ Construction of Vascular Endothelial Growth Microenvironment[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 571-584. doi: 10.3969/j.issn.0258-2724.2016.03.016 |
世界卫生组织.2010年全球非传染性疾病报告[R]. 日内瓦:世界卫生组织,2011.
|
陈伟伟,高润霖,刘力生,等. 中国心血管病2013概要[J]. 中国循环杂志,2014,29(7):487-491.
|
苑秀芳. 急性冠脉综合征介入治疗与药物治疗的对比研究[J]. 中外医疗,2009(12):83-84.
|
MELTEM A A, GERHARD Z, HANS P W. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization:a review of current strategies[J]. Biotechnology Advances, 2010, 28(1):119-129.
|
ZHENG W T, WANG Z L, SONG L J, et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model[J]. Biomaterials, 2012, 33(10):2880-2891.
|
CRISTINA M S, ANA M P, RAQUEL S. Endothelial dysfunction:a major mediator of diabetic vascular disease[J]. Biochimica et Biophysica Acta, 2013, 1832:2216-2231.
|
TU Q F, ZHANG Y, GE D X, et al. Novel tissue-engineered vascular patches based on decellularized canine aortas and their recellularization in vitro[J]. Applied Surface Science, 2008, 255(2):282-285.
|
LI J Y S, HAGA H J, CHIEN S. Molecular basis of the effects of shear stress on vascular endothelial cells[J]. Journal of Biomechanics 2005, 38(10):1949-1971.
|
LI J A, YANG P, ZHANG K, et al. Preparation of SiO2/TiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 307:575-579.
|
ZHENG N, YANG P, WANG Q Y, et al. Preparation of micro-patterned surfaces of Si-N-O films and their influence on adhesion behavior of endothelial cells[J]. Scinece China, 2010, 53(1):257-263.
|
郑楠,杨苹,王起义,等. Si-N-O薄膜表面微图形的制备及对内皮细胞黏附行为的影响[J]. 中国科学,2010,40(1):21-28. ZHENG Nan, YANG Ping, WANG Qiyi, et al. Preparation of micro-patterned surfaces of Si-N-O films and their influence on adhesion behaviour of endothelial cells[J]. Sci. China Tech. Sci., 2010, 40(1):21-28.
|
廖玉珍,杨苹,王进,等. 内皮细胞在钛金属表面透明质酸微图形上的粘附行为[J]. 功能材料,2010,41(10):1807-1809. LIAO Yuzhen, YANG Ping, WANG Jin, et al. Behaviour of HUVECs adhered on patterned HA on titanium[J]. Journal of Functional Materials, 2010, 41(10):1807-1809
|
LEI L J, LI C H, YANG P, et al. Photo-immobilized heparin micropatterns on Ti-O surface:preparation, characterization, and evaluation in vitro[J]. Journal of Materials Science, 2011, 46:6772-6782.
|
ZHANG F M, LI G C, YANG P, et a. Fabrication of biomolecule-PEG micropattern on titanium surface and its effects on platelet adhesion[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102:457-465.
|
LI J A, ZHANG K, YANG P, et al. Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate[J]. Colloids and Surfaces B:Biointerfaces, 2013, 110:199-207.
|
LI J A, ZHANG K, YANG P, et al. Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface[J]. Experimental Cell Research, 2013, 319:2663-2672.
|
LI J A, LI G C, ZHANG K, et al. Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface[J]. Applied Surface Science, 2013, 273:24-31.
|
LI J A, ZHANG K, XU Y, et al. A novel co-culture models of human vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface[J]. Journal of Biomedical Materials Research:Part A, 2014, 102A:1950-1960.
|
LI J A, ZHANG K, WU J J, et al. Co-culture of endothelial cells and patterned smooth muscle cells on titanium:Construction with high density of endothelial cells and low density of smooth muscle cells[J]. Biochemical and Biophysical Research Communications, 2015, 456:555-561.
|
XUE X Q, WANG J, ZHU Y, et al. Biocompatibility of pure titanium modified by human endothelial cell-derived extracellular matrix[J]. Applied Surface Science, 2010, 256(12):3866-3873.
|
PIKEA D B, CAI S, POMRANING K R. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF[J]. Biomaterials, 2006, 27:5242-5251.
|
OTA T, SAWA Y, IWAI S. Fibronectin-hepatocyte growth factor enhances reendothelialization in tissue engineered heart valve[J]. Ann. Thorac. Surg., 2005, 80:1794-1802.
|
TU Q F, ZHAO Y C, XUE X Q, et al. Improved endothelialization of titanium vascular implants by extracellular matrix secreted from endothelial cells[J]. Tissue Engineering:Part A, 2010, 16(12):3635-3645.
|
TU Q F, YANG Z L, ZHU Y, et al. Effect of tissue specificity on the performance of extracellular matrix in improving endothelialization of cardiovascular implants[J]. Tissue Engineering Part A, 2013, 19:91-102.
|
LI J A, ZHANG K, WU J J, et al. Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility[J]. Colloids and Surfaces B:Biointerfaces, 2015, 128:201-210.
|
XIANG L J, LI C H, YANG P, et al. Fabrication of micro-patterned titanium dioxide nanotubes thin film and its biocompatibility[J]. The Journal of Engineering, 2014, 7:1-7.
|
WU J J, LI J A, WU F, et al. Effect of micropatterned TiO2 nanotubes thin film on the deposition of endothelial extracellular matrix:for the purpose of enhancing surface biocompatibility[J]. Biointerphases, 2015, 10(4):04A302.
|
陈佳龙,李全利,陈俊英,等. 心血管植入材料体内内皮化研究进展[J]. 生物医学工程学杂志,2009,26(6):1380-1383. CHEN Jjialong, LI Quanli, CHEN Junying, et al. Progress in researches of in-vivo re-endothelialization at the site of implanting cardiovascular devices[J]. Journal of Biomedical Engineering, 2009, 26(6):1380-1383.
|
WANG X, LIU T, CHEN Y, et al. Extracellular matrix inspired surface functionalization with heparin, fibronectin and VEGF provides an anticoagulant and endothelialization supporting microenvironment[J]. Applied Surface Science, 2014, 320:871-882.
|
邓坤,张琨,王雪,等. 肝素和ⅳ胶原在Ti表面组装及不同组装层数对内皮祖细胞的影响[J]. 功能材料,2013,44(17):2490-2493. DENG Kun, ZHANG Kun, WANG Xue, et al. assembly of heparin and typeⅳcollagen onto titanium surface and the effect of assembled layer numbers on the behavior of endothelial progenitor cells[J]. Journal of Functional Materials, 2013, 44(17):2490-2493.
|
WANG J, CHEN Y, LIU T, et al. Covalent co-immobilization of heparin/laminin complex that with different concentration ratio on titanium surface for selectively direction of platelets and vascular cells behavior[J]. Applied Surface Science, 2014, 317:776-786.
|
QI P K, YAN W, YANG Y, et al. Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface[J]. Colloids and Surfaces B:Biointerfaces, 2015, 126:70-79.
|
陈卓玥,李全利,赵元聪,等. 钛表面固定特异性识别内皮祖细胞的多肽适配子[J]. 高等化学学报,2011,32(1):100-104. CHEN Zhuoyue, LI Quanli, ZHAO Yuanchong, et al. Immobilization of peptide aptamer of specific indentification of endothelial progenitor cell on titanium surface[J]. Chemical Journal of Chinese Univrsities, 2011, 32(1):100-104.
|
LIU T, LIU Y, CHEN Y, et al. Immobilization of heparin/poly-l-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior[J]. Acta Biomaterialia, 2014, 10(5):1940-1954.
|
LIU T, ZENG Z, LIU Y, et al. Surface modification with dopamine and Heparin/Poly-l-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions[J]. ACS Applied Materials Interfaces, 2014, 6(11):8729-8743.
|
LIU Y, ZHANG J, WANG J, et al. Tailoring of the dopamine coated surface with vegf loaded heparin/poly-l-lysine particles for anticoagulation and accelerate in-situ endothelialization[J]. Journal of Biomedical Materials Research Part A, 2014, 103(6):2024-2034.
|
LI G C, ZHANG F M, LIAO Y Z, et al. Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility[J]. Colloids and Surfaces B:Biointerfaces, 2010, 81(1):255-262
|
LI G C, YANG P, QIN W, et al. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization[J]. Biomaterials, 2011, 32(21):4691-4703.
|
LI G C, LIAO Y Z, YANG P, et al. Tailoring of the titanium surface by immobilization of heparin/fibronectin complexes for improving blood compatibility and endothelialization:an in vitro study[J]. ACS Biomacromolecules, 2011, 12:1155-1168.
|
LI G C, YANG P, GUO X, et al. An in vitro evaluation of inflammation response of titanium functionalized with heparin/fibronectin complex[J]. Cytokine, 2011, 56(2):208-217.
|
LI G C, YANG P, HUANG N, et al. Responses of platelets and endothelial cells to heparin/fibronectin complex on titanium:In situ investigation by quartz crystal microbalance with dissipation and immunochemistry[J]. Journal of Bioscience and Bioengineering, 2013, 116(2):235-245.
|
张琨,邓坤,李敬安,等. Ti表面构建Ⅳ型胶原/肝素生物层提高细胞相容性的研究[J]. 功能材料,2012,43(24):3368-3376. ZHANG Kun, DENG Kun, LI Jingan, et al. Immobilization heparin/type IV collagen onto titanium surface for improving the biocompatibility[J]. Journal of Functional Materials, 2012, 43(24):3368-3376.
|
ZHANG K, LI J A, DENG K, et al. The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin[J]. Colloids and Surfaces B:Biointerfaces, 2013, 108:295-304.
|
LIU S H, LIU T, CHEN J Y, et al. Influence of a layer- by-layer assembled multilayer of anti-CD34 antibody, VEGF and heparin on the endothelialization and antic- oagulation of titanium surface[J]. Journal of Biomedical Materials Research:Part A, 2013, 101:1144-1157.
|
谢槟,李贵才,代璐,等. 基于多巴胺自聚合及肝素固定改善钛的血液相容性[J]. 高等学校化学学报,2012,33(1):90-95. XIE Bin, LI Guicai, DAI Lu, et al. Blood compatibility improvement of titanium via self-polymerization of dopamine and covalent graft of heparin[J]. Chemical Journal of Chinese Univrsities, 2012, 33(1):90-95.
|
EDWARD S M B, NATHANIEL K, NADIEZHDA C M, et al. Nitric oxide inhibits neointimal hyperplasia following vascular injury via differential, cell-specific modulation of SOD-1 in the arterial wall[J]. Nitric Oxide, 2015, 44:8-17.
|
WENG Y J, SONG Q, ZHOU Y J, et al. Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents[J]. Biomaterials, 2011, 32(5):1253-1263.
|
YANG Z L, YANG Y, XIONG K Q, et al. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents[J]. Biomaterials, 2015, 63:80-92.
|
YANG Y, QI P K, DING Y H, et al. A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization[J]. Journal of Materials Chemistry B, 2015, 3:72-81.
|
YANG Y, QI P K, WEN F, et a. Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin:hemocompatibility, growth behaviors of vascular cells, and tissue response[J]. ACS Applied Materials Interfaces, 2014, 6:14608-14620.
|
XIANG L J, LI J A, HE Z K, et al. Design and construction of TiO2 nanotubes in microarray using two-step anodic oxidation for application of cardiovascular implanted devices[J]. Micro Nano Letters, 2015, 10(6):287-291.
|
CHEN J, ZHAO A S, CHEN H Q, et al. The effect of full/partial UV-irradiation of TiO2 films on altering the behavior of fibrinogen and platelets[J]. Colloids and Surfaces B:Biointerfaces, 2014, 122:709-718.
|
CHEN J, YANG P, LIAO Y Z, et al. Effect of the duration of UV irradiation on the anticoagulant properties of titanium dioxide films[J]. ACS Applied materials interfaces, 2015, 7(7):4423-4432.
|
CHEN J L, HUANG N, MA B L, et al. Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field[J]. ACS Applied Materials and Interfaces, 2013, 5:5976-5985.
|