• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 29 Issue 1
Jan.  2016
Turn off MathJax
Article Contents
HE Zhongying, WANG Genhui, YE Aijun, XIA Xiushen. Dynamic Reliability Calculation of Bridge Based on Quasi-non-integrable-Hamiltonian System Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 50-56. doi: 10.3969/j.issn.0258-2724.2016.01.008
Citation: HE Zhongying, WANG Genhui, YE Aijun, XIA Xiushen. Dynamic Reliability Calculation of Bridge Based on Quasi-non-integrable-Hamiltonian System Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 50-56. doi: 10.3969/j.issn.0258-2724.2016.01.008

Dynamic Reliability Calculation of Bridge Based on Quasi-non-integrable-Hamiltonian System Theory

doi: 10.3969/j.issn.0258-2724.2016.01.008
  • Received Date: 15 Dec 2014
  • Publish Date: 25 Jan 2016
  • To improve the computation efficiency of bridge dynamic reliability, kinetic energy and potential energy of a railway bridge with nonlinear characteristics were expressed in the modal space, and the generalized momentum, the generalized velocity, the Hamiltonian function and the quasi-Hamiltonian system equation were established based on the quasi-Hamiltonian system theory. A quasi-non-integrable-Hamiltonian equation for a railroad concrete bridge was derived just considering its lateral and torsion displacements, and the backward Kolmogorov (BK) equation governing conditional reliability function and its corresponding quantitative boundary and initial conditions were obtained, and the central finite difference method was introduced to calculate the BK equation. The case research results show that the dynamic reliability of a nonlinear bridge structure and the peak value of probability density decrease as the primary energy increases, while they increase as the limit energy raises; and the contrastive analysis results of railway bridges with different spans are agreed with the actual situations, illustrating that the dynamic reliability calculation of railway bridges based on the quasi-non-integrable-Hamiltonian system theory is feasible.

     

  • loading
  • 曾庆元,郭向荣. 列车桥梁时变系统振动分析理论与应用[M]. 北京:中国铁道出版社,1999: 1-14.
    郭文华,曾庆元. 高速铁路多跨简支梁桥横向振动随机分析[J]. 长沙铁道学院学报,1997,15(1): 1-9. GUO Wenhua, ZENG Qingyuan. Transverse random vibration analysis for the high-speed railway multi-span simply-supported bridge[J]. Journal of Changsha Railway University, 1997, 15(1): 1-9.
    刘佩. 随机地震作用下结构动力可靠度计算方法研究[D]. 北京:北京交通大学土木建筑工程学院,2010.
    LI J, CHEN J B. Stochastic dynamics of structures[M]. New York: John Wiley and Sons, 2009: 191-308.
    CHEN J B, LI J. A note on the principle of preservation of probability and probability density evolution equation[J]. Probabilistic Engineering Mechanics, 2009, 24: 51-59.
    RICE S O. Mathematical analysis of random noise[J]. Bell System Technical Journal, 1944, 23(3): 282-332.
    RICE S O. Mathematical analysis of random noise[J]. Bell System Technical Journal, 1945, 24(1): 146-156.
    朱位秋. 非线性随机动力学与控制:Hamilton理论体系框架[M]. 北京:科学出版社,2004: 1-369.
    ZHU W Q, CAI G Q. Random vibration of viscoelastic system under broad-band excitations[J]. International Journal of Non-Linear Mechanics, 2011(46): 720-726.
    ZHU W Q, CAI G Q. Generation of non-Gaussian stochastic processes using nonlinear filters[J]. Probabilistic Engineering Mechanics, 2014, 36: 56-62.
    HU R C, YING Z G, ZHU W Q. Stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems using stochastic maximum principle[J].Structural and Multidisciplinary Optimization, 2014(49): 69-80.
    GAN C B, ZHU W Q. First-passage failure of quasi-non-integrable-Hamiltonian systems[J]. International Journal of Non-Linear Mechanics, 2001(36): 209-220.
    ZENG Y, ZHU W Q. Stochastic averaging of quasi-nonintegrable-Hamiltonian systems under Poisson white noise excitation[J]. ASME Journal of Applied Mechanics, 2011, 78(2): 021002-021011.
    GU X D, ZHU W Q. Stochastic optimal control of quasi non-integrable Hamiltonian systems with stochastic maximum principle[J]. Nonlinear Dynamics, 2012, 70: 779-787.
    GU X D, ZHU W Q. Optimal bounded control of quasi-nonintegrable Hamiltonian systems using stochastic maximum principle[J]. Nonlinear Dynamics, 2014, 76: 1051-1058.
    CHOPRA A K. Dynamics of structures: theory and applications to earthquake engineering[M]. New Jersey: Prentice Hall, 1995: 409-429, 659-683.
    赫中营. 基于拟Hamilton理论的既有铁路桥梁动力可靠度研究[D]. 兰州:兰州交通大学土木工程学院,2008.
    陈滨. 分析动力学[M]. 北京:北京大学出版社,1987: 401-406.
    星谷胜. 随机振动分析[M]. 常宝琦,译. 北京:地震出版社,1977: 143-163.
    陆金甫. 偏微分方程差分方法[M]. 北京:高等教育出版社,1988: 191-272.
    严隽耋. 车辆工程[M]. 北京:中国铁道出版社,2003: 275-336.
    刘卫国. MATLAB程序设计教程[M]. 北京:中国水利水电出版社,2005: 152-206.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(782) PDF downloads(400) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return