• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 25 Issue 4
Aug.  2012
Turn off MathJax
Article Contents
GUO Chunxiang, GUO Qiang, GUO Yaohuang. Random Lattice Order Group Decision-Making Based on Interval Probability Preferences[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 705-711. doi: 10.3969/j.issn.0258-2724.2012.04.027
Citation: GUO Chunxiang, GUO Qiang, GUO Yaohuang. Random Lattice Order Group Decision-Making Based on Interval Probability Preferences[J]. Journal of Southwest Jiaotong University, 2012, 25(4): 705-711. doi: 10.3969/j.issn.0258-2724.2012.04.027

Random Lattice Order Group Decision-Making Based on Interval Probability Preferences

doi: 10.3969/j.issn.0258-2724.2012.04.027
  • Received Date: 27 Apr 2011
  • Publish Date: 25 Aug 2012
  • To solve the random lattice order group decision-making problems where preference relations are random and probability of random events is described by interval values, a decision-making method based on the preferences of decision makers subject to an interval probability distribution is proposed. First, the preference relations are extended from four kinds (preference, inferior, indifference, and incomparability) to seven kinds (preference, inferior, indifference, incomparability, incomparability with a minimum upper bound, incomparability with a maximum lower bound, and incomparability with a minimum upper bound and a maximum lower bound). Second, the probability distribution of lattice order preference relations is defined on the basis of the concept and property of interval probability, and the operation rules of interval numbers. Third, the probability maximization objective function of preference relation of any pair of alternatives is established, and individual preferences are aggregated to group preferences according to priority rules and intersection rules. Finally, the steps of the group decision-making method are listed through a case study, and the feasibility and effectiveness of the method is validated.

     

  • loading
  • CHUU S J. Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information[J]. Computers and Industrial Engineering, 2009, 57(3): 1033-1042.
    MA Liching. Visualizing preferences on spheres for group decisions based on multiplicative preference relations[J]. European Journal of Operational Research, 2010, 203(1): 176-184.
    CHEN Yenliang, CHENG Lichen. An approach to group ranking decisions in a dynamic environment[J]. Decision Support Systems,2010, 48(4): 622-634.
    HAHN E D. Judgmental consistency and consensus in stochastic multi-criteria decision making[J].Expert Systems with Applications, 2010, 37(5): 3784-3791.
    郭耀煌,刘家诚,刘常青,等. 格序决策[M]. 上海:上海科学技术出版社,2003: 5-20.
    GONZLEZPACHN J, ROMERO C. Aggregation of partial ordinal rankings: An interval goal programming method[J]. Computers and Operations Research, 2001, 28(8): 827-834.
    GONZLEZPACHN J, RODRGUEZ-GALIANO M I, ROMERO C. Transitive approximation to pairwise comparison matrices by using interval goal programming[J]. Journal of Operational Research Society, 2003, 54(5): 532-538.
    JABEUR K, JEAN-MARC M. A collective choice method based on individual preferences relational systems[J]. European Journal of Operational Research, 2007, 177(3): 1549-1565.
    JABEUR K, JEAN-MARC M. An ordinal sorting method for group decision-making[J]. European Journal of Operational Research, 2007, 180(3): 1272-1289.
    JABEUR K, JEAN-MARC M, KHLIF S B. A distance-based collective preorder integrating the relative importance of the group's members[J]. Group Decision and Negotiation, 2004, 13(4): 327-349.
    COOK W D, KRESS M. A Multiple criteria decision model with ordinal preference data[J]. European Journal of Operational Research, 1991, 54(2):191-198.
    REBAI A, AOUNI B, MARTEL J M. A multi-attribute method for choosing among potential alternatives with ordinal evaluation[J]. European Journal of Operational Research, 2006, 174(1): 360-373.
    XU Zeshui. A method based on distance measure for interval-valued intuitionistic fuzzy group decision making[J]. Information Sciences, 2010, 180(1): 181-190.
    WANG Y M, YANG J B, XU D L. A preference aggregation method through the estimation of utility intervals[J]. Computers & Operations Research, 2005, 32(8): 2027-2049.
    RISTO L, PEKKA S. SMAA: stochastic multi-criteria acceptability analysis for group decision making[J]. Operational Research, 2001, 49(3): 444-454.
    王坚强,龚岚. 基于集对分析的区间概率随机多准则决策方法[J]. 控制与决策,2009,24(12): 1877-1880. WANG Jianqiang, GONG Lan. Interval probability stochastic multi-criteria decision-making approach based on set pair analysis[J]. Control and Decision, 2009, 24(12): 1877-1880.
    王坚强,周玲. 基于最大隶属大的区间概率灰色随机多准则决策方法[J]. 控制与决策,2010,25(4): 493-496. WANG Jianqiang, ZHOU Ling. Grey random multi-criteria decision-making approach based on maximum membership degree[J]. Control and Decision, 2010, 25(4): 493-496.
    郭强,郭春香,郭耀煌. 基于格序偏好距离的群决策方法[J]. 系统工程与电子技术,2010, 32(2): 298-302. GUO Qiang, GUO Chunxiang, GUO Yaohuang. Method of group decision-making based on the distance of lattice order preferences[J]. Systems Engineering and Electronics, 2010, 32(2): 298-302.
    HALL W J, BLOCKLEY D I, John P Davis. Uncertain inference using interval probability Theory[J]. International Journal of Approximate Reasoning, 1998, 19(3): 247-264.
    WEICHSELBERGER K. The theory of interval-probability as a unifying concept for uncertainty[J]. International Journal of Approximate Reasoning, 2000, 24(2): 149-170.
    GUO Peijun, HIDEO T . Decision making with interval probabilities[J]. European Journal of Operational Research, 2010, 203(2): 444-454.
    FAN Zhiping, YUE Qi, FENG Bo, et al. An approach to group decision-making with uncertain preference ordinals[J]. Computers and Industrial Engineering, 2010, 58(1): 51-57.
    LODWICK W A, JAMISON K. David. Interval-valued probability in the analysis of problems containing a mixture of possibilistic, probabilistic, and interval uncertainty[J]. Fuzzy Sets and Systems, 2008, 159(21): 2845-2858.
    GRECO S, MOUSSEAU V, SLOWINSKI R. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions[J]. European Journal of Operational Research, 2008, 191(2): 416-436.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1181) PDF downloads(352) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return