• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 19 Issue 4
Aug.  2006
Turn off MathJax
Article Contents
HU Yue, YANG Han. Traveling Wave Solutions to Kadomtsev-Petviashvili Equation[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 537-540.
Citation: HU Yue, YANG Han. Traveling Wave Solutions to Kadomtsev-Petviashvili Equation[J]. Journal of Southwest Jiaotong University, 2006, 19(4): 537-540.

Traveling Wave Solutions to Kadomtsev-Petviashvili Equation

  • Received Date: 27 Dec 2005
  • Publish Date: 25 Aug 2006
  • The generalized K-P(Kadomtsev-Petviashvili) equation with two parameters was studied.The existence of traveling wave solution of this equation was proved under some exponentially increasing assumptions for nonlinear term by using the mountain pass theorem without Palais-Smale conditions and corresponding Sobolev compact embedding theorem.

     

  • loading
  • KORTEWEG K J,DEVRIES G.On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary waves[J].Philos.Mag.Ser.,1958,39(5):422-443.[2] KADOMDTSEY B B,PETVIASHVILI V I.On the stability of solitary wave in weakly dispersing media[J].Sovit.Phys.Doki.,1970,15:539-541.[3] LAEDKE W,SPATSCHEK K H.Nonlinear ion-acoustic waves in weak magnetic fields[J].J.Phys.Fluids,1982,25:985-989.[4] HIYAMOGGI B K S.Nonlinear ion-acoustic waves in weak magnetized plasma and Zakharov-Kuznetsov equation[J].J.Plasma Phys.,1989,41:83-88.[5] BOURGAIN J.On the Cauchy problem for the Kadomtesv-Petviashvili equation[J].Geometric and Functional Analysis,1993,3:315-341.[6] WILLEM M.On the generalized Kadomtsev-Petviashvili equation[J].Seminaire do Mathematique,1995,96:213-222.[7] SHIYAMOGGI B K.The painleve analysis of the Zakharov-Kuznetsov equation[J].Physica Scripa,1990,42:641-642.[8] AIZICOVICI S,WEN S L.Anti-perodic traveling wave solutions to a forced two-dimensional generalized Kdv equation[J].J.Math.and Anal.,1993,174:556-565.[9] BESOV O V,ILIN V P,NIKOLSKII S M.Integral representations of functions and imbeddings theorems[M].Vol Ⅰ.New York:Wiley,1978:50-89.[10] AMBROSETT I,RABINOWITZ P.Dual variational methods in critical point theory and applications[J].J.Funct.Analysis,1973:349-381.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1377) PDF downloads(374) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return