• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
WANG Pangwei, XU Jinghui, HE Xinze, WANG Simiao, Wang Li. Urban Autonomous Traffic System Situation Evolution Modeling Based on Multimodal Semantic Cognition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250294
Citation: WANG Pangwei, XU Jinghui, HE Xinze, WANG Simiao, Wang Li. Urban Autonomous Traffic System Situation Evolution Modeling Based on Multimodal Semantic Cognition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250294

Urban Autonomous Traffic System Situation Evolution Modeling Based on Multimodal Semantic Cognition

doi: 10.3969/j.issn.0258-2724.20250294
  • Received Date: 29 May 2025
    Available Online: 21 Jan 2026
  • To address urban traffic congestion propagation, a lane-level Micro Cell Transmission Model (Micro-CTM) was proposed from a microscopic perspective. By leveraging the multimodal semantic cognition capabilities of a large language model (LLM), a lane-level traffic congestion evolution model, the coupled map lattice-driven lane congestion evolution model (CML-LCEM), was constructed. First, a traffic flow feature recognition framework was constructed by integrating an LLM with a mixture-of-experts (MoE) architecture, enabling multimodal semantic cognition of urban traffic through cross-modal semantic alignment and model fine-tuning. Secondly, transfer entropy was employed to analyze the causal relationships between lane-level cells, based on which a lane-level traffic congestion evolution model was constructed to predict key cells in traffic congestion situations. Finally, experiments were conducted on a local road network within the Beijing High-level Autonomous Driving Demonstration Zone, and multiple types of cells were classified to validate the model’s ability to characterize lane-level saturation and congestion propagation. The results show that the proposed method significantly improves lane-level prediction accuracy during peak hours compared to traditional models. Early intervention on key cells can reduce average vehicle travel time by 28.3%, providing a data-driven large-model solution for real-time congestion warning, mitigation strategy formulation, and integrated vehicle-road-cloud applications in intelligent transportation systems.

     

  • loading
  • [1]
    卢春房, 马成贤, 江媛, 等. 中国车路协同产业研究与发展对策建议[J]. 中国公路学报, 2023, 36(3): 225-233.

    LU Chunfang, MA Chengxian, JIANG Yuan, et al. Countermeasure suggestions of development and research for vehicle infrastructure cooperation industry in China[J]. China Journal of Highway and Transport, 2023, 36(3): 225-233.
    [2]
    肖建力, 邱雪, 张扬, 等. 交通大模型综述[J]. 交通运输工程学报, 2025, 25(01): 8-28.

    XIAO Jianli, QIU Xue, ZHANG Yang, et al. Review of Traffic Foundation Model[J]. Journal of Traffic and Transportation Engineering, 2025, 25(01): 8-28.
    [3]
    潘磊, 袁鸿霄, 钟准, 等. 基于大模型构建图网络的事件因果关系识别[J/OL]. 西南交通大学学报: 1-10[2025-09-05]. http://kns.cnki.net/kcms/detail/51.1277.u.20250408.1541.004.html.

    PAN Lei, YUAN Hongxiao, ZHONG Zhun, et al. Event Causal Identification Based on Large Language Model-Constructed Graph Networks [J/OL]. Journal of Southwest Jiaotong University, 2025: 1-10[2025-09-05]. http://kns.cnki.net/kcms/detail/51.1277.u.20250408.1541.004.html.
    [4]
    童旭东, 周强, 顾晶晶, 等. 基于预训练时空自注意力大模型的交通流量预测[J/OL]. 小型微型计算机系统: 1-8[2025-09-05]. https://doi.org/10.20009/j.cnki.21-1106/TP.2025-0155.

    TONG Xudong, ZHOU Qiang, GU Jingjing, et al. Pre-trained Spatio-Temporal Attention Model for Traffic Flow Prediction [J/OL]. Journal of Chinese Computer Systems: 1-8[2025-09-05]. https://doi.org/10.20009/j.cnki.21-1106/TP.2025-0155.
    [5]
    冯婷薇, 杨达, 刘家威, 等. 融合多源时序数据的车辆换道全过程检测方法研究[J/OL]. 西南交通大学学报, 1-12[2025-09-11]. https://link.cnki.net/urlid/51.1277.u.20250417.1012.002.

    FENG Tingwei, YANG Da, LIU Jiawei, et al. Research on the Whole Vehicle Lane-changing Process Detection Method Based on Multi-source Temporal Data Fusion [J/OL]. Journal of Southwest Jiaotong University, 1-12[2025-09-11]. https://link.cnki.net/urlid/51.1277.u.20250417.1012.002.
    [6]
    王庞伟, 何昕泽, 张龙, 等. 智能网联环境下城市道路多源交通数据补全方法[J]. 中国公路学报, 2025, 38(01): 281-293.

    WANG Pangwei, HE Xinze, ZHANG Long, et al. Multisource Traffic Data Completion Method for Urban Roads in Intelligent Connected Scenarios[J]. China Journal of Highway and Transport, 2025, 38(01): 281-293.
    [7]
    WANG Pangwei, LIU Cheng, ZHANG Juan, et al. DS-UKF-based positioning method for intelligent connected vehicles in urban intersection scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 25(6): 6118-6132. doi: 10.1109/tits.2023.3336770
    [8]
    ZUO Zhiqiang, LIU Zhengxuan, WANG Yijing. A survey of optimal control for mixed traffic system with vehicle-roadcloud integration[J]. Control and Decision, 2023, 38(3): 577-594
    [9]
    ZHANG Siyao, FU Daocheng, LIANG Wenzhe, et al. Trafficgpt: viewing, processing and interacting with traffic foundation models[J]. Transport Policy, 2024, 150: 95-105. doi: 10.1016/j.tranpol.2024.03.006
    [10]
    CUI Yaodong, HUANG Shucheng; ZHONG Jiaming, et al. Drivellm: Charting the path toward full autonomous driving with large language models[J]. IEEE Transactions on Intelligent Vehicles, 2023.
    [11]
    TANG Yihong , WANG Zhaokai, QU Ao, et al. Synergizing Spatial Optimization with Large Language Models for Open-Domain Urban Itinerary Planning[J/OL]. arXiv preprint arXiv: 2402.07204, 2024.
    [12]
    TIAN Yonglin, LI Xuan, ZHANG Hui, et al. VistaGPT: Generative parallel transformers for vehicles with intelligent systems for transport automation[J]. IEEE Transactions on Intelligent Vehicles, 2023.
    [13]
    LI Xuan, LIU Enlu, SHEN Tianyu, et al. ChatGPT-based scenario engineer: A new framework on scenario generation for trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024.
    [14]
    吴精乙, 景峻, 贺熠凡, 等. 基于多模态大模型的高速公路场景交通异常事件分析方法[J]. 图学学报, 2024, 45(06): 1266-1276.

    WU Jingyi, JING Jun, HE Yifan, et al. Analysis Method for Traffic Abnormal Events in Highway Scenarios Based on Multimodal Foundation Model[J]. Journal of Graphics, 2024, 45(06): 1266-1276.
    [15]
    王祥, 任浩, 谭国真, 等. 大语言模型协同强化学习的自动驾驶决策方法[J]. 交通运输系统工程与信息, 2025, 25(04): 137-146 + 161.

    WANG Xiang, REN Hao, TAN Guozhen, et al. Autonomous Driving Decision-Making Method Based on Large Language Model Collaborative Reinforcement Learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2025, 25(04): 137-146 + 161.
    [16]
    WANG Maonan, PANG Aoyu, KAN Yuheng, et al. LLM-assisted light: leveraging large language model capabilities for human-mimetic traffic signal control in complex urban environments[J/OL]. (2024-03-13). https://arxiv.org/abs/2403.08337.
    [17]
    周臻, 顾子渊, 曲小波, 等. 城市多模式交通大模型MT-GPT: 点线面的分层技术与应用场景[J]. 中国公路学报, 2024, 37(2): 253-274. doi: 10.19721/j.cnki.1001-7372.2024.02.020

    ZHOU Zhen, GU Ziyuan, QU Xiaobo, et al. Urban multimodal transportation generative pretrained transformer foundation model: hierarchical techniques and application scenarios of spot-corridor-network decomposition[J]. China Journal of Highway and Transport, 2024, 37(2): 253-274. doi: 10.19721/j.cnki.1001-7372.2024.02.020
    [18]
    LIU C X, YANG S, XU Q X, et al. Spatial-temporal large language model for traffic prediction[C]//2024 25th IEEE International Conference on Mobile Data Management (MDM). Brussels: IEEE, 2024: 31-40.
    [19]
    KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3): 21. doi: 10.1007/s12544-015-0170-8
    [20]
    S V Kumar, L Vanajakshi. Short-term traffic flow prediction using seasonal arima model with limited input data[J]. European Transport Research Review, 7(3): 1–9, 2015.
    [21]
    CHANG S Y, WU H C, KAO Y C. Tensor extended Kalman filter and its application to traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 13813-13829. doi: 10.1109/TITS.2023.3299557
    [22]
    李珣, 程硕, 吴丹丹, 等. 车路协同下基于元胞自动机的精细交通流模型[J]. 西南交通大学学报, 2025, 60(01): 225-232. doi: 10.3969/j.issn.0258-2724.20220830

    LI Xun, CHENG Shuo, WU Dandan, et al. Refined Traffic Flow Model Based on Cellular Automaton Under Cooperative Vehicle Infrastructure System[J]. Journal of Southwest Jiaotong University, 2025, 60(01): 225-232. doi: 10.3969/j.issn.0258-2724.20220830
    [23]
    ZHAI C, WU W T, XIAO Y P. The jamming transition of multi-lane lattice hydrodynamic model with passing effect[J]. Chaos, Solitons & Fractals, 2023, 171: 113515.
    [24]
    AKOPOV A S, BEKLARYAN L A. Traffic improvement in Manhattan Road networks with the use of parallel hybrid biobjective genetic algorithm[J]. IEEE Access, 2024, 12: 19532-19552. doi: 10.1109/ACCESS.2024.3361399
    [25]
    LI R N, QIN Y, LIU J, et al. Multipath based congestion propagation via information network interaction in IIoT[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8512-8523. doi: 10.1109/TII.2024.3354306
    [26]
    YE H N, LUO X, YE H N, et al. Cascading failure analysis on Shanghai metro networks: an improved coupled map lattices model based on graph attention networks[J]. International Journal of Environmental Research and Public Health, 2021, 19(1): 204. doi: 10.3390/ijerph19010204
    [27]
    CHEN S Q, LÜ X. Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demand model[J]. Transportmetrica B: Transport Dynamics, 2024, 12(1): 2336029. doi: 10.1080/21680566.2024.2336029
    [28]
    CHEN T, WANG Z W, XIANG J, et al. Analysis of mixed traffic flow characteristics based on cellular automata model under lane management measures[J]. Physica A: Statistical Mechanics and Its Applications, 2024, 654: 130177. doi: 10.1016/j.physa.2024.130177
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views(26) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return