• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
SHEN Yin, HAN Juncheng, DAI Shibing, WANG Yu. Research on Modeling Strategy of Ancient Stone Arch Bridges Based on Masonry Structure Gap Image Recognition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250233
Citation: SHEN Yin, HAN Juncheng, DAI Shibing, WANG Yu. Research on Modeling Strategy of Ancient Stone Arch Bridges Based on Masonry Structure Gap Image Recognition[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250233

Research on Modeling Strategy of Ancient Stone Arch Bridges Based on Masonry Structure Gap Image Recognition

doi: 10.3969/j.issn.0258-2724.20250233
  • Received Date: 29 Apr 2025
  • Accepted Date: 04 Dec 2025
  • Rev Recd Date: 12 Oct 2025
  • Available Online: 11 Dec 2025
  • The conservation of ancient stone arch bridges is severely hindered by drawing deficiency, difficult on-site survey, and structural deterioration. These obstacles make it difficult to acquire the geometric parameters required for refined mechanical models and to reproduce the real damage state of individual blocks. As a result, refined mechanical models can hardly be established effectively. To solve the problem, a finite-element (FE) modeling strategy of ancient stone arch bridges based on masonry structure gap image recognition is proposed. First, a dataset with a large number of labeled contours of blocks in stone arch bridges was constructed, and a trained YOLOv8 convolutional neural network was used for instance segmentation of the block contours on the bridge images. Second, the recognition results were post-processed with the Douglas–Peucker algorithm, and key geometric information of individual blocks was extracted. Finally, a parametric modeling procedure was developed: an ABAQUS parametric modeling script was developed to automatically generate a separate FE model that faithfully replicates the actual masonry structure, with contact interfaces defined between blocks for subsequent FE simulation analysis. The results show that under self-weight and deck loads, the peak principal stress in the arch rib predicted by the separate FE model is about 1.2 times that given by a conventional monolithic FE model, and conspicuous stress concentrations appear at masonry defects. The separate model can more accurately reproduce the block distribution and local defects of the actual bridge. It has significant advantages for revealing the damage mechanism of the masonry structure of ancient bridges, and provides a new perspective and method for the mechanical simulation study of ancient bridge protection.

     

  • loading
  • [1]
    张承文, 淳庆, 花全均, 等. 基于元遗传算法的石拱桥传感器优化布置及评价方法研究[J/OL]. 西南交通大学学报, 2024: 1-11. (2024-10-10). https: //kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240913002&dbname=CJFD&dbcode=CJFQ.
    [2]
    AYTULUN E, SOYOZ S, KARCIOGLU E. System identification and seismic performance assessment of a stone arch bridge[J]. Journal of Earthquake Engineering, 2022, 26(2): 723-743. doi: 10.1080/13632469.2019.1692740
    [3]
    LOURENCO P J B B. Computational strategies for masonry structures[D]. Delft: Technische Universiteit Delft, 1996.
    [4]
    岳增国, 金伟良, 傅军. 基于分离式模型的砌体结构有限元分析[C]//砌体结构理论与新型墙材应用. 长沙: 中国工程建设标准化协会砌体结构专业委员会, 2007: 79-83.
    [5]
    SILVA R, COSTA C, ARÊDE A, et al. Numerical simulations of experimental material testing in stone masonry arch railway bridges[J]. Structure and Infrastructure Engineering, 2024, 20(5): 633-652. doi: 10.1080/15732479.2022.2119585
    [6]
    张德宇, 王新宇, 施宵勇, 等. 基于ABAQUS的砌体结构抗剪性能有限元分析[J]. 厦门大学学报(自然科学版), 2021, 60(6): 1077-1082. doi: 10.6043/j.issn.0438-0479.202005003

    ZHANG Deyu, WANG Xinyu, SHI Xiaoyong, et al. Finite element analysis of shear behavior of masonry structure based on ABAQUS[J]. Journal of Xiamen University (Natural Science), 2021, 60(6): 1077-1082. doi: 10.6043/j.issn.0438-0479.202005003
    [7]
    KARALAR M, ÇUFALI G. Structural assessment of historical stone bridges with the finite element method under dynamic effects of arch shape: The Antik Iscehisar Bridge[J]. Applied Sciences, 2023, 13(19): 10740. doi: 10.3390/app131910740
    [8]
    KESHMIRY A, HASSANI S, DACKERMANN U, et al. Assessment, repair, and retrofitting of masonry structures: a comprehensive review[J]. Construction and Building Materials, 2024, 442: 137380. doi: 10.1016/j.conbuildmat.2024.137380
    [9]
    谢明志, 樊丁萌, 蒋志鹏, 等. 基于计算机视觉的混凝土结构裂缝检测研究现状与展望[J/OL]. 西南交通大学学报, 2024: 1-20. (2024-09-14). https: //kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240913004&dbname=CJFD&dbcode=CJFQ.
    [10]
    LOVERDOS D, SARHOSIS V. Pixel-level block classification and crack detection from 3D reconstruction models of masonry structures using convolutional neural networks[J]. Engineering Structures, 2024, 310: 118113. doi: 10.1016/j.engstruct.2024.118113
    [11]
    朱前坤, 谢辰辉, 张琼, 等. 基于计算机视觉和深度学习的古桥裂缝识别方法[J/OL]. 西南交通大学学报, 2025: 1-12. (2025-09-05). https: //kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20250905006&dbname=CJFD&dbcode=CJFQ.
    [12]
    余波. 基于深度学习的桥梁裂缝检测方法研究[D]. 西安: 西安科技大学, 2022.
    [13]
    ZHANG Y H. Application of BP neural network in structural damage diagnosis of bridge behind abutment[J]. Applied Mechanics and Materials, 2016, 847: 440-444. doi: 10.4028/www.scientific.net/AMM.847.440
    [14]
    马卫飞. 基于深度学习的桥梁裂缝检测算法研究[D]. 西安: 陕西师范大学, 2018.
    [15]
    RIVEIRO B, CONDE-CARNERO B, GONZÁLEZ-JORGE H, et al. Automatic creation of structural models from point cloud data: The case of masonry structures[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, II-3/W3: 3-9.
    [16]
    IBRAHIM Y, NAGY B, BENEDEK C. CNN-based watershed marker extraction for brick segmentation in masonry walls[C]//International Conference on Image Analysis and Recognition. Cham: Springer International Publishing, 2019: 332-344.
    [17]
    LOVERDOS D, SARHOSIS V. Automatic image-based brick segmentation and crack detection of masonry walls using machine learning[J]. Automation in Construction, 2022, 140: 104389. doi: 10.1016/j.autcon.2022.104389
    [18]
    LOVERDOS D, SARHOSIS V. Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning[J]. Engineering Structures, 2023, 275: 115256. doi: 10.1016/j.engstruct.2022.115256
    [19]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 779-788.
    [20]
    LIU Y, ZHOU T, XU J Y, et al. Rotating target detection method of concrete bridge crack based on YOLO v5[J]. Applied Sciences, 2023, 13(20): 11118.
    [21]
    李秋萍. 古桥结构体系及石拱桥的分析、监测评估与保护[D]. 杭州: 浙江大学, 2011.
    [22]
    李泽伟, 杨永清, 廖曼, 等. 基于计算机视觉与混合测量技术的结构裂缝识别方法[J/OL]. 西南交通大学学报, 2024: 1-12. (2024-07-15). https: //kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240702003&dbname=CJFD&dbcode=CJFQ.
    [23]
    中交公路规划设计院. 公路圬工桥涵设计规范: JTG D61—2018[S]. 北京: 人民交通出版社, 2018.
    [24]
    王欣, 王忠凯. ABAQUS分离式模拟砌体墙性能[J]. 四川建筑科学研究, 2023, 49(3): 33-43. doi: 10.19794/j.cnki. 1008- 1933.2023.0031

    WANG Xin, WANG Zhongkai. ABAQUS separate simulated masonry wall performance[J]. Sichuan Building Science, 2023, 49(3): 33-43. doi: 10.19794/j.cnki. 1008- 1933.2023.0031
    [25]
    RAPONE D, BRANDO G, SPACONE E. A discontinuum finite element modelling approach for reproducing the structural behavior of masonry walls[C]//14th World Congress in Computational Mechanics& ECCOMAS Congress 2020. Paris: Scipedia SL, 2020: 1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views(64) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return