| Citation: | ZHENG Yanxi, GE Qiongxuan, ZHANG Bo, ZHU Jinquan, ZHAO Lu. Optimization Design of Power Supply Partitions and Stator Segments in High-Speed Maglev Traction System[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20250224 |
To enhance the economic efficiency of the traction power supply system of high-speed maglev, an optimization design method integrating power supply partitions and stator segment length was developed using the improved genetic algorithm. Firstly, a mathematical model of the traction system was established through analysis of equivalent circuits under dual-feeding mode. The effective range of power supply partitions was determined to be 20–40 km through comprehensive consideration of tracking intervals and traction performance constraints. Then, the design length of the stator segment was 600–2 000 m according to step-switching control and traction performance constraints. On this basis, the dynamically-constrained adaptive genetic algorithm was employed to optimize the design of the power supply partitions and stator segment length, so as to minimize the overall economic cost. Finally, the Shanghai–Hangzhou maglev planning line and the Shanghai maglev demonstration line were selected as validation subjects. Through hardware-in-the-loop simulations, dynamic train operation data was acquired to compare the comprehensive economic cost of the traction system before and after optimization. Results show that for the Shanghai–Hangzhou line, the traditional design scheme requires seven 27 km power supply partitions of equal length. In contrast, the optimized scheme uses six differentiated partitions, among which the partition at the ends is 20 km, and the central partition is about 37 km. This reduces the comprehensive economic cost by 14.25%. For the Shanghai maglev demonstration line, the existing scheme uses 25 stator segments with a length of about 1 200 m each. The optimized scheme produces 26 unequal-length segments, forming a current-matched layout with shorter segments for higher current and longer segments for lower current, which reduces the comprehensive economic cost by 19.1%.
| [1] |
熊嘉阳, 沈志云, 池茂儒, 等. 高速磁悬浮列车技术综述[J]. 交通运输工程学报, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
XIONG Jiayang, SHEN Zhiyun, CHI Maoru, et al. Review on high-speed maglev train technology[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2025.02.001
|
| [2] |
林国斌, 刘万明, 徐俊起, 等. 中国高速磁浮交通的发展机遇与挑战[J]. 前瞻科技, 2023, 2(4): 7-18. doi: 10.3981/j.issn.2097-0781.2023.04.001
LIN Guobin, LIU Wanming, XU Junqi, et al. Opportunities and challenges for the development of high-speed maglev transportation in China[J]. Science and Technology Foresight, 2023, 2(4): 7-18. doi: 10.3981/j.issn.2097-0781.2023.04.001
|
| [3] |
邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474, 530. doi: 10.3969/j.issn.0258-2724.20220001
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
|
| [4] |
康劲松, 丁浩, 倪菲, 等. 计及悬浮系统影响的高速磁浮直线同步电机建模方法[J]. 西南交通大学学报, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
KANG Jinsong, DING Hao, NI Fei, et al. Modeling of high-speed maglev linear synchronous motors considering influence of suspension system[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 729-736. doi: 10.3969/j.issn.0258-2724.20230431
|
| [5] |
ZHU J Q, CAO X Q, GE Q X, et al. Adaptive-SMO-based traction force fluctuation suppression strategy considering suspension system for high-speed maglev train[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2289-2299. doi: 10.1109/TIE.2023.3270525
|
| [6] |
CAO X Q, GE Q X, ZHU J Q, et al. Improved sliding mode traction control combined sliding mode disturbance observer strategy for high-speed maglev train[J]. IEEE Transactions on Power Electronics, 2023, 38(1): 827-838. doi: 10.1109/TPEL.2022.3201614
|
| [7] |
李自康, 戴春辉, 黄翠翠, 等. 基于多种群遗传算法的磁浮列车自抗扰速度控制[J]. 西南交通大学学报, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113
LI Zikang, DAI Chunhui, HUANG Cuicui, et al. Active disturbance rejection speed control for maglev trains based on multiple population genetic algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920. doi: 10.3969/j.issn.0258-2724.20240113
|
| [8] |
张昕, 翟凌露, 王舰深, 等. 基于加权融合的常导高速磁浮列车UKF定位算法[J]. 西南交通大学学报, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
ZHANG Xin, ZHAI Linglu, WANG Jianshen, et al. Weighted fusion-based unscented Kalman filter positioning algorithm for normal-conducting high-speed maglev trains[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 832-838. doi: 10.3969/j.issn.0258-2724.20230501
|
| [9] |
MA Z X, NIU H C, ZHANG X, et al. Virtual space vector overmodulation strategy for NPC three-level inverters with common-mode voltage suppression[J]. IEEE Transactions on Power Electronics, 2024, 39(6): 6877-6888. doi: 10.1109/TPEL.2024.3375348
|
| [10] |
ZHAO M T, GE Q X, ZHU J Q, et al. Improved synchronized SVPWM strategy for high-power three-level active neutral point clamped traction inverter[J]. IEEE Transactions on Power Electronics, 2025, 40(2): 3189-3209. doi: 10.1109/TPEL.2024.3487528
|
| [11] |
GAO Z, GE Q X, LI Y H, et al. Hybrid improved carrier-based PWM strategy for three-level neutral-point-clamped inverter with wide frequency range[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8517-8538. doi: 10.1109/TPEL.2020.3047952
|
| [12] |
葛琼璇, 张波, 韦榕, 等. 高速磁浮交通牵引供电与控制技术现状及展望[J]. 前瞻科技, 2023, 2(4): 89-95. doi: 10.3981/j.issn.2097-0781.2023.04.009
GE Qiongxuan, ZHANG Bo, WEI Rong, et al. Present situation and prospect of traction power supply and control technologies for highspeed maglev transportation[J]. Science and Technology Foresight, 2023, 2(4): 89-95. doi: 10.3981/j.issn.2097-0781.2023.04.009
|
| [13] |
魏远乐, 郝文瑾, 刘建强. 高速磁浮列车供电分区及定子段设计方法研究[J]. 铁道建筑技术, 2020(12): 1-5, 12.
WEI Yuanle, HAO Wenjin, LIU Jianqiang. Research on the design method of power supply division and stator segment of high-speed maglev train[J]. Railway Construction Technology, 2020(12): 1-5,12.
|
| [14] |
丁文亮. 中速磁浮列车追踪间隔时间计算方法及供电分区划分优化研究[D]. 北京: 北京交通大学, 2019.
|
| [15] |
林滢, 秦峰. 600 km/h高速磁浮牵引系统的配置及其关键参数的选择[J]. 城市轨道交通研究, 2023, 26(8): 110-113. doi: 10.16037/j.1007-869x.2023.08.019
LIN Ying, QIN Feng. Configuration for 600 km/h high-speed maglev traction system and selection of key parameters[J]. Urban Mass Transit, 2023, 26(8): 110-113. doi: 10.16037/j.1007-869x.2023.08.019
|
| [16] |
ZHAO M T, GE Q X. Grid-side harmonic current suppression based on carrier phase-shifted PWM and extended state observer for high-power multiple parallel 3L-ANPC rectifier[J]. IEEE Transactions on Industrial Electronics, 2024, 71(6): 5399-5410. doi: 10.1109/TIE.2023.3294648
|
| [17] |
姜西. 常导高速磁浮列车追踪间隔研究[J]. 机车电传动, 2025(1): 175-181. doi: 10.13890/j.issn.1000-128X.2025.01.110
JIANG Xi. Study on tracking interval of normal-conducting high-speed maglev trains[J]. Electric Drive for Locomotives, 2025(1): 175-181. doi: 10.13890/j.issn.1000-128X.2025.01.110
|
| [18] |
朱进权, 葛琼璇, 孙鹏琨, 等. 高速磁悬浮列车在双端供电模式下的电流控制策略[J]. 电工技术学报, 2021, 36(23): 4937-4947.
ZHU Jinquan, GE Qiongxuan, SUN Pengkun, et al. Current control strategy for high-speed maglev in the double feeding mode[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4937-4947.
|
| [19] |
张雯柏, 林国斌, 康劲松, 等. 考虑相移补偿的磁浮列车长定子高频注入无传感控制方法[J]. 西南交通大学学报, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
ZHANG Wenbai, LIN Guobin, KANG Jinsong, et al. Sensorless control method of high-frequency injection for long-stator synchronous motor of maglev trains considering phase shift compensation[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 1032-1041. doi: 10.3969/j.issn.0258-2724.20240310
|
| [20] |
XIAO X Y, XU W, TANG Y R, et al. Improved loss minimization control based on time-harmonic equivalent circuit for linear induction motors adopted to linear metro[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8601-8612. doi: 10.1109/TVT.2023.3244602
|
| [21] |
孙鹏琨, 葛琼璇, 王晓新, 等. 基于降阶观测器的高速磁浮列车无速度传感器控制算法[J]. 中国电机工程学报, 2020, 40(4): 1302-1309, 1421. doi: 10.13334/j.0258-8013.pcsee.190691
SUN Pengkun, GE Qiongxuan, WANG Xiaoxin, et al. Sensorless control strategy of high speed maglev based on reduced order observer[J]. Proceedings of the CSEE, 2020, 40(4): 1302-1309,1421. doi: 10.13334/j.0258-8013.pcsee.190691
|
| [22] |
彭兵, 王成元, 夏加宽, 等. 磁动势法五相永磁力矩电机转矩分析[J]. 中国电机工程学报, 2012, 32(21): 105-111.
PENG Bing, WANG Chengyuan, XIA Jiakuan, et al. Torque analysis of five-phase permanent magnet torque motors based on magnetic motive force[J]. Proceedings of the CSEE, 2012, 32(21): 105-111.
|
| [23] |
邓连波, 陈晨, 静恩伟, 等. 高速磁浮车站列车作业优化与能力分析[J]. 铁道科学与工程学报, 2023, 20(11): 4041-4049. doi: 10.19713/j.cnki.43-1423/u.T20222325
DENG Lianbo, CHEN Chen, JING Enwei, et al. Train operation optimization and capability analysis of high-speed maglev station[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4041-4049. doi: 10.19713/j.cnki.43-1423/u.T20222325
|
| [24] |
DING Z S, FAN X H, SONG B S, et al. NSGA-II model-based dielectric frequency response parameters for aging and moisture analysis of transformer insulation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3518710.
|
| [25] |
王娟. 磁悬浮列车用长定子直线同步电机特性研究与故障分析[D]. 北京: 中国科学院电工研究所. 2004.
|
| [26] |
刘江伟. 沪杭高速磁浮通道线路方案研究[J]. 铁道标准设计, 2024, 68(8): 23-29. doi: 10.13238/j.issn.1004-2954.202301060005
LIU Jiangwei. Research on Shanghai-Hangzhou high speed maglev line scheme[J]. Railway Standard Design, 2024, 68(8): 23-29. doi: 10.13238/j.issn.1004-2954.202301060005
|