| Citation: | LÜ Longlong, LI Xiaoyang, LIAO Hongjian, YOU Yaoxing. Size Effect Model for Red-Bed Soft Rock Based on Machine Learning Algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1390-1403. doi: 10.3969/j.issn.0258-2724.20250044 |
Red-bed soft rock is highly susceptible to softening, swelling, and disintegration upon water exposure and exhibits pronounced rheological behavior, which often leads to structural deformation and failure in engineering constructions. The rock has attracted widespread attention in geotechnical research. The mechanical properties of rocks are significantly influenced by sample size and geometry, yet existing size effect models are typically tailored to specific rock types. Therefore, establishing a unified size effect model and understanding the influence of size on the mechanical behavior of red-bed soft rocks are of considerable significance.
A series of unconfined uniaxial compression tests was conducted on red-bed soft rock specimens with varying height-to-diameter ratios (
As the
Changes in various mechanical properties are obtained as the
| [1] |
吕龙龙, 廖红建, 伏映鹏, 等. 干湿状态对红层软岩脆延特性影响的试验研究[J]. 西安交通大学学报, 2021, 55(4): 162-171. doi: 10.7652/xjtuxb202104018
LÜ Longlong, LIAO Hongjian, FU Yingpeng, et al. Experimental research on effects of dry and natural states on brittle-ductile transition property for red-bed soft rock[J]. Journal of Xi’an Jiaotong University, 2021, 55(4): 162-171. doi: 10.7652/xjtuxb202104018
|
| [2] |
张俊云, 张乐, 高福洲, 等. 干湿循环下红层土石混合料强度及变形特性的试验研究[J]. 西南交通大学学报, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343
ZHANG Junyun, ZHANG Le, GAO Fuzhou, et al. Experimental study on strength and deformation characteristics of red-bed soil-rock mixture under wetting-drying cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1394-1404. doi: 10.3969/j.issn.0258-2724.20220343
|
| [3] |
和铭, 魏良帅, 贾逸, 等. 红层软岩膨胀力学特性试验研究[J]. 水利水电技术, 2019, 50(4): 171-178.
HE Ming, WEI Liangshuai, JIA Yi, et al. Experimental study on expansive mechanical characteristics of red-bed soft rock[J]. Water Resources and Hydropower Engineering, 2019, 50(4): 171-178.
|
| [4] |
ZHANG G D, LING S X, LIAO Z X, et al. Mechanism and influence on red-bed soft rock disintegration durability of particle roughness based on experiment and fractal theory[J]. Construction and Building Materials, 2024, 419: 135504. doi: 10.1016/j.conbuildmat.2024.135504
|
| [5] |
陈从新, 卢海峰, 袁从华, 等. 红层软岩变形特性试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 261-270.
CHEN Congxin, LU Haifeng, YUAN Conghua, et al. Experimental research on deformation propertities of red-bed soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 261-270.
|
| [6] |
周翠英, 梁宁, 刘镇. 红层软岩压缩破坏的分形特征与级联失效过程[J]. 岩土力学, 2019, 40(增1): 21-31.
ZHOU Cuiying, LIANG Ning, LIU Zhen. Fractal characteristics of compression failure of red soft rock and cascading failure process[J]. Rock and Soil Mechanics, 2019, 40(S1): 21-31.
|
| [7] |
中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.
|
| [8] |
江权, 崔洁, 冯夏庭, 等. 玄武岩力学参数的随机性统计与概率分布估计[J]. 岩土力学, 2017, 38(3): 784-792.
JIANG Quan, CUI Jie, FENG Xiating, et al. Stochastic statistics and probability distribution estimation of mechanical parameters of basalt[J]. Rock and Soil Mechanics, 2017, 38(3): 784-792.
|
| [9] |
杨同, 王宝学, 张磊. 非标准岩样室内力学试验的几种处理方法[J]. 中国矿业, 2007, 16(2): 87-89. doi: 10.3969/j.issn.1004-4051.2007.02.027
YANG Tong, WANG Baoxue, ZHANG Lei. Several processing methods in indoor mechanics tests of the non-standard rock samples[J]. China Mining Magazine, 2007, 16(2): 87-89. doi: 10.3969/j.issn.1004-4051.2007.02.027
|
| [10] |
CHEN L, LIU T Y, JIA B X, et al. Acoustic emission and fractal characteristics of red beds soft rock under water-force coupling[J]. Scientific Reports, 2024, 14: 4424. doi: 10.1038/s41598-024-54814-2
|
| [11] |
朱其志, 闵中泽, 王岩岩, 等. 粉砂岩三轴压缩试验中的试样尺寸效应研究[J]. 岩石力学与工程学报, 2019, 38(增2): 3296-3303.
ZHU Qizhi, MIN Zhongze, WANG Yanyan, et al. Study on the size effect of silty sandstone samples under conventional triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3296-3303.
|
| [12] |
侍倩, 曾亚武. 岩土力学实验[M]. 2版. 武汉: 武汉大学出版社, 2010.
|
| [13] |
蔡美峰. 岩石力学与工程[M]. 2版. 北京: 科学出版社, 2013.
|
| [14] |
杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学, 2005, 22(4): 112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022
YANG Shengqi, SU Chengdong, XU Weiya. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 2005, 22(4): 112-118. doi: 10.3969/j.issn.1000-4750.2005.04.022
|
| [15] |
朱珍德, 邢福东, 王军, 等. 基于灰色理论的脆性岩石抗压强度尺寸效应试验研究[J]. 岩土力学, 2004, 25(8): 1234-1238.
ZHU Zhende, XING Fudong, WANG Jun, et al. Experimental study on size effect on comperession strength of brittle rock based on grey theory[J]. Rock and Soil Mechanics, 2004, 25(8): 1234-1238.
|
| [16] |
刘宝琛, 张家生, 杜奇中, 等. 岩石抗压强度的尺寸效应[J]. 岩石力学与工程学报, 1998, 17(6): 611-614. doi: 10.3321/j.issn:1000-6915.1998.06.001
LIU Baochen, ZHANG Jiasheng, DU Qizhong, et al. A study of size effect for compression strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614. doi: 10.3321/j.issn:1000-6915.1998.06.001
|
| [17] |
HASHEMINEJAD M M, SOHANKAR N, HAJIANNIA A. Predicting the collapsibility potential of unsaturated soils using adaptive neural fuzzy inference system and particle swarm optimization[J]. Scientia Iranica, 2018, 25(6): 2980-2996.
|
| [18] |
TIE J H, MENG W Z, WEI M D, et al. Loading rate and mineralogical controls on tensile strength of rocks: a machine learning view[J]. Rock Mechanics and Rock Engineering, 2023, 56(8): 6119-6125. doi: 10.1007/s00603-023-03354-8
|
| [19] |
ZHANG P, YIN Z Y, JIN Y F, et al. A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest[J]. Engineering Geology, 2020, 265: 105328. doi: 10.1016/j.enggeo.2019.105328
|
| [20] |
赵奎, 杨道学, 曾鹏, 等. 单轴压缩条件下花岗岩声学信号频域特征分析[J]. 岩土工程学报, 2020, 42(12): 2189-2197. doi: 10.11779/CJGE202012004
ZHAO Kui, YANG Daoxue, ZENG Peng, et al. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2189-2197. doi: 10.11779/CJGE202012004
|
| [21] |
TOUPIN R A. Saint-venant’s principle[J]. Archive for Rational Mechanics and Analysis, 1965, 18(2): 83-96. doi: 10.1007/BF00282253
|
| [22] |
WITCZAK M, KALOUSH K, PENLLINEN T, et al. Simple performance test for superpave mix deesign[M]. Cambridge: Nation academy press, 2002.
|
| [23] |
陈瑜, 黄永恒, 曹平, 等. 不同高径比时软岩强度与变形尺寸效应试验研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1073-1078.
CHEN Yu, HUANG Yongheng, CAO Ping, et al. Size effect experimental study of strength and deformation in different height-to-diameter ratio soft rocks[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1073-1078.
|
| [24] |
ALBULAYHI K, ABU AL-HAIJA Q, ALSUHIBANY S A, et al. IoT intrusion detection using machine learning with a novel high performing feature selection method[J]. Applied Sciences, 2022, 12(10): 5015. doi: 10.3390/app12105015
|
| [25] |
张林, 郭郑曦, 齐实, 等. 基于机器学习模型的高植被覆盖区浅层滑坡预测[J]. 农业工程学报, 2024, 40(17): 149-160.
ZHANG Lin, GUO Zhengxi, QI Shi, et al. Predicting shallow landslides in highly vegetation-covered areas using machine learning models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(17): 149-160.
|
| [26] |
ZHANG J R, NIU W J, YANG Y Z, et al. Machine learning prediction models for compressive strength of calcined sludge-cement composites[J]. Construction and Building Materials, 2022, 346: 128442. doi: 10.1016/j.conbuildmat.2022.128442
|
| [27] |
CZAJKOWSKI M, KRETOWSKI M. The role of decision tree representation in regression problems–An evolutionary perspective[J]. Applied Soft Computing, 2016, 48: 458-475. doi: 10.1016/j.asoc.2016.07.007
|
| [28] |
CAI R, HAN T H, LIAO W Y, et al. Prediction of surface chloride concentration of marine concrete using ensemble machine learning[J]. Cement and Concrete Research, 2020, 136: 106164. doi: 10.1016/j.cemconres.2020.106164
|
| [29] |
郝建, 刘河清, 刘建康, 等. 基于振动信号的岩石单轴抗压强度钻进预测实验研究[J]. 岩石力学与工程学报, 2024, 43(6): 1406-1424.
HAO Jian, LIU Heqing, LIU Jiankang, et al. Experimental study of rock uniaxial compressive strength prediction with drilling based on vibration signals[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1406-1424.
|
| [30] |
YANG Y R, YUAN Y, HAN Z, et al. Interpretability analysis for thermal sensation machine learning models: an exploration based on the SHAP approach[J]. Indoor Air, 2022, 32(2): e12984.
|
| [31] |
张玉江, 邵珠娟, 袁红辉, 等. 不同高径比煤岩力学性能及破坏特征实验研究[J]. 中国矿业, 2020, 29(5): 110-114. doi: 10.12075/j.issn.1004-4051.2020.05.021
ZHANG Yujiang, SHAO Zhujuan, YUAN Honghui, et al. Experimental study on mechanical properties and failure characteristics of coal rocks with different aspect ratios[J]. China Mining Magazine, 2020, 29(5): 110-114. doi: 10.12075/j.issn.1004-4051.2020.05.021
|
| [32] |
贺桂成, 李玉兰, 丁德馨. 不同高径比石膏试样强度与尺寸效应的试验研究[J]. 地下空间与工程学报, 2016, 12(6): 1464-1470.
HE Guicheng, LI Yulan, DING Dexin. Experimental investigation on strength and size effect of the gypsum sample in different height to diameter ratios[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(6): 1464-1470.
|
| [33] |
ZHANG C L, LI M J, YAN X, et al. Fracture process and failure characteristics of sandstone with different height-to-diameter ratios[J]. Processes, 2023, 11(11): 3069. doi: 10.3390/pr11113069
|
| [34] |
SU H J, JING H W, MAO X B, et al. Size effect of sandstone after high temperature under uniaxial compression[J]. Journal of Central South University, 2015, 22(5): 1901-1908. doi: 10.1007/s11771-015-2709-1
|