| Citation: | WANG Tan, YANG Fan, ZHOU Zhijie, LIU Jinling, LI Ning, WANG Kaiqi. Seismic Performance of Hybrid Reinforced Columns with Built-in Spiral Stirrup Core Columns Under Composite Salt Erosion[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240675 |
To enhance the durability of structural members while ensuring ductility, a new glass fiber-reinforced polymer (GFRP)-steel hybrid reinforced (HRBS) column with a built-in spiral stirrup core column was proposed. Four HRBS columns were subjected to quasi-static loading tests, among which two HRBS columns underwent composite salt dry-wet cycling tests. The failure process, ultimate failure mode, hysteresis curves, skeleton curves, energy dissipation capacity, performance degradation, and residual displacement of the HRBS columns before and after composite salt dry-wet cycling were investigated. The results indicate that HRBS columns demonstrate good seismic performance both before and after composite salt dry-wet cycling, and all specimens exhibit flexural failure. Under conventional environments, the yield load and peak load of HRBS columns increase by 25.77% and 28.68%, respectively, with an increase in the core column diameter. In a composite salt environment, increasing the core column diameter improves the load-bearing capacity, displacement ductility factor, strength degradation factor, energy dissipation capacity, overall stiffness, and self-centering ability of the HRBS columns. After composite salt erosion, the yield load and peak load of specimens with a 200 mm core column diameter decrease by 17.65% and 15.77%, respectively, while the energy dissipation capacity and displacement ductility factor increase by 14.41% and 32.61%, respectively. Therefore, by designing an appropriate core column diameter, HRBS columns ensure good durability and overall seismic performance in both conventional and corrosive environments.
| [1] |
WEI J, WANG C G, WEI X, et al. Corrosion evolution of steel reinforced concrete under simulated tidal and immersion zones of marine environment[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 900-912. doi: 10.1007/s40195-018-0867-5
|
| [2] |
YIN G J, ZUO X B, SUN X H, et al. Macro-microscopically numerical analysis on expansion response of hardened cement paste under external sulfate attack[J]. Construction and Building Materials, 2019, 207: 600-615. doi: 10.1016/j.conbuildmat.2019.02.159
|
| [3] |
李国满, 李浩然, 邱国斌, 等. 混凝土氯盐-硫酸盐耦合侵蚀机理、模型及数值模拟研究进展[J]. 硅酸盐通报, 2024, 43(11): 3935-3946, 3967.
LI Guoman, LI Haoran, QIU Guobin, et al. Research progress on chloride-sulfate coupling erosion mechanism, model and numerical simulation of concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(11): 3935-3946,3967.
|
| [4] |
LI Y, YIN S P, LV H L. Combined effects of dry-wet cycles and sustained loads on the seismic behavior of TRC-strengthened RC columns[J]. Structures, 2021, 33: 2226-2237. doi: 10.1016/j.istruc.2021.05.089
|
| [5] |
AHMAD SAWPAN M, ALSHAHRANI H, KAFI A. Durability of pultruded GFRP rebar subjected to natural weathering in alkaline solution for 10 years[J]. Journal of Polymers and the Environment, 2023, 31(3): 1090-1101. doi: 10.1007/s10924-022-02667-z
|
| [6] |
HOMAN S M. Durability of fibre-reinforced polymers (FRP) used in concrete structures[D]. Toronto: University of Toronto, 2000.
|
| [7] |
AL-SALLOUM Y A, EL-GAMAL S, ALMUSALLAM T H, et al. Effect of harsh environmental conditions on the tensile properties of GFRP bars[J]. Composites Part B: Engineering, 2013, 45(1): 835-844. doi: 10.1016/j.compositesb.2012.05.004
|
| [8] |
WU G, WANG X, WU Z, et al. Durability of basalt fibers and composites in corrosive environments[J]. Journal of Composite Materials, 2015, 49(7): 873-887. doi: 10.1177/0021998314526628
|
| [9] |
WANG Z H, XIE J H, MAI Z H, et al. Durability of GFRP bar-reinforced seawater–sea sand concrete beams: coupled effects of sustained loading and exposure to a chloride environment[J]. Engineering Structures, 2023, 283: 115814.1-115814.13. doi: 10.1016/j.engstruct.2023.115814
|
| [10] |
ABDALLAH A E, EL-SALAKAWY E F. Seismic performance of GFRP-RC circular columns with different aspect ratios and concrete strengths[J]. Engineering Structures, 2022, 257: 114092.1-114092.16. doi: 10.1016/j.engstruct.2022.114092
|
| [11] |
ALI M A, El-SALAKAWY E. Seismic performance of GFRP-reinforced concrete rectangular columns[J]. Journal of Composites for Construction, 2016, 20(3): 04015074.1-04015074.12. doi: 10.1061/(asce)cc.1943-5614.0000637
|
| [12] |
KHARAL Z, SHEIKH S A. Seismic behavior of square and circular concrete columns with GFRP reinforcement[J]. Journal of Composites for Construction, 2020, 24(1): 04019059.1-04019059.17. doi: 10.1061/(asce)cc.1943-5614.0000988
|
| [13] |
CHEN Y D, LI P D. Anti-corrosion performance of a novel ECC-GFRP spiral-confined RC column[J]. Case Studies in Construction Materials, 2024, 20: e03241.1-e03241.17. doi: 10.1016/j.cscm.2024.e03241
|
| [14] |
GE W J, ZHANG S K, ZHANG Z W, et al. Eccentric compression behavior of Steel-FRP composite bars RC columns under coupling action of chloride corrosion and load[J]. Structures, 2023, 50: 1051-1068. doi: 10.1016/j.istruc.2023.02.090
|
| [15] |
ACI Committee 440. Guide for The Design and Construction of Concrete Reinforced with fiber-reinforced polymer (FRP) Bars[S]. Farmington Hill: American Concrete Institute, 2015.
|
| [16] |
TOBBI H, FARGHALY A S, BENMOKRANE B. Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars[J]. ACI Structural Journal, 2012, 109(4): 551-558 doi: 10.14359/51683874
|
| [17] |
SUN L, WEI M H, ZHANG N. Experimental study on the behavior of GFRP reinforced concrete columns under eccentric axial load[J]. Construction and Building Materials, 2017, 152: 214-225. doi: 10.1016/j.conbuildmat.2017.06.159
|
| [18] |
XIN Q, NIU Q L, ZHANG M, et al. Effect of chlorine salt erosion on flexural performance of GFRP and steel bars hybrid reinforced beams[J]. Structures, 2024, 59: 105779.1-105779.12. doi: 10.1016/j.istruc.2023.105779
|
| [19] |
周满清, 张智梅, 魏久燚. 钢筋与FRP筋混合配筋混凝土梁最大裂缝宽度计算[J]. 复合材料科学与工程, 2022(3): 73-80. doi: 10.19936/j.cnki.2096-8000.20220328.011
ZHOU Manqing, ZHANG Zhimei, WEI Jiuyi. Calculation for maximum crack width of concrete beams reinforced with hybrid steel and FRP bars[J]. Composites Science and Engineering, 2022(3): 73-80. doi: 10.19936/j.cnki.2096-8000.20220328.011
|
| [20] |
王坦, 李立巍, 周志杰, 等. GFRP筋与钢筋混合配筋柱偏心受压性能试验研究[J]. 建筑结构学报, 2023, 44(增1): 248-255.
WANG Tan, LI Liwei, ZHOU Zhijie, et al. Experimental study on eccentric compression performance of column with hybrid of GFRP and steel bars[J]. Journal of Building Structures, 2023, 44(S1): 248-255.
|
| [21] |
邓宗才, 高磊, 王献云. 配置GFRP筋的混凝土矩形截面柱抗震试验研究[J]. 应用基础与工程科学学报, 2019, 27(5): 1065-1076. doi: 10.16058/j.issn.1005-0930.2019.05.011
DENG Zongcai, GAO Lei, WANG Xianyun. Experiments on seismic behavior of rectangular glass fiber-reinforced polymer-reinforced concrete columns[J]. Journal of Basic Science and Engineering, 2019, 27(5): 1065-1076. doi: 10.16058/j.issn.1005-0930.2019.05.011
|
| [22] |
袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8): 55-65, 144. doi: 10.6052/j.issn.1000-4750.2020.08.0532
YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid frp-steel reinforced ecc-concrete composite columns[J]. Engineering Mechanics, 2021, 38(8): 55-65,144. doi: 10.6052/j.issn.1000-4750.2020.08.0532
|
| [23] |
王作虎, 罗义康, 刘杜, 等. CFRP筋-高强钢筋/高强混凝土柱的抗震性能[J]. 复合材料学报, 2021, 38(10): 3463-3473. doi: 10.13801/j.cnki.fhclxb.20201222.001
WANG Zuohu, LUO Yikang, LIU Du, et al. Seismic behavior of high-strength concrete columns reinforced with CFRP tendons and high-strength steels[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3463-3473. doi: 10.13801/j.cnki.fhclxb.20201222.001
|
| [24] |
JING D H, YU T, LIU X D. New configuration of transverse reinforcement for improved seismic resistance of rectangular RC columns: Concept and axial compressive behavior[J]. Engineering Structures, 2016, 111: 383-393. doi: 10.1016/j.engstruct.2015.12.014
|
| [25] |
FANG S, LI L J, LIN L H, et al. FRP interlocking multi-spiral reinforced square concrete columns: a promising compression application for marine engineering[J]. Engineering Structures, 2021, 244: 112733.1-112733.23. doi: 10.1016/j.engstruct.2021.112733
|
| [26] |
李明翰, 周威, 刘明建, 等. 复合螺旋箍筋约束混凝土柱偏压性能试验[J]. 哈尔滨工业大学学报, 2019, 51(12): 113-120. doi: 10.11918/j.issn.0367-6234.201812034
LI Minghan, ZHOU Wei, LIU Mingjian, et al. Experimental investigation of reinforced concrete columns with composite spiral stirrups under eccentric loading[J]. Journal of Harbin Institute of Technology, 2019, 51(12): 113-120. doi: 10.11918/j.issn.0367-6234.201812034
|
| [27] |
YANG Y F, ZHANG Y Q, FU F. Behaviour of axially compressed CTHST stub columns with inner spiral stirrup[J]. Structures, 2022, 45: 372-389. doi: 10.1016/j.istruc.2022.09.038
|
| [28] |
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.
|
| [29] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料 拉伸试验 第1部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2011.
|
| [30] |
周志杰. 装配式带螺旋箍筋芯柱的混合配筋柱抗震性能研究[D]. 长春: 长春工程学院, 2023.
|
| [31] |
郑跃, 郑山锁, 董立国, 等. 酸雨环境下腐蚀RC剪力墙抗震性能试验研究[J]. 工程力学, 2020, 37(5): 190-198, 227.
ZHENG Yue, ZHENG Shansuo, DONG Liguo, et al. Experimental study on the seismic behavior of rc shear walls in a simulated acid environment[J]. Engineering Mechanics, 2020, 37(5): 190-198,227.
|
| [32] |
金伟良, 薛文, 陈驹. 海岸及近海混凝土材料耐久性设计指标的影响参数分析[J]. 建筑结构学报, 2011, 32(12): 86-97.
JIN Weiliang, XUE Wen, CHEN Ju. Effecting coefficients for concrete structure durability design index[J]. Journal of Building Structures, 2011, 32(12): 86-97.
|
| [33] |
中国建筑科学研究院. 建筑抗震试验方法规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.
|
| [34] |
ZHOU J, CHEN Z P, LIU D Y, et al. Experimental and numerical investigations on eccentric compression behavior of square CFST columns with inner spiral stirrup[J]. Structures, 2023, 57: 105196.1-105196.19. doi: 10.1016/j.istruc.2023.105196
|
| [35] |
Guan D, Chen Z, Liu J, et al. Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone[J]. Engineering Structures, 2021, 245: 112776. doi: 10.1016/j.engstruct.2021.112776
|
| [36] |
李涛, 朱鹏涛, 张彬, 等. 硫酸盐侵蚀下混凝土内腐蚀反应-扩散过程的实验研究[J]. 硅酸盐通报, 2020, 39(1): 50-55. doi: 10.16552/j.cnki.issn1001-1625.2020.01.006
LI Tao, ZHU Pengtao, ZHANG Bin, et al. Experimental study on corrosion reaction-diffusion process of concrete under sulfate attack[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 50-55. doi: 10.16552/j.cnki.issn1001-1625.2020.01.006
|