| Citation: | LI Xiaozhen, ZHANG Jingyuan, HUANG Wentai, WANG Ming. Research on Completed Bridge Alignment Control Technology of Continuous Steel Truss Railway Girder Bridge Based on Driving Performance[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240654 |
In order to meet the requirements for driving performance of railway bridges, it is necessary to control the smoothness of the bridge alignment. Based on the analysis of driving stability, the sensitive wavelength range of the vehicle body was determined. The amplitude of the completed bridge alignment within the range was adopted as the evaluation criterion. From the perspective of ensuring driving performance, by considering the self-adjustment capability of ballastless tracks and the relationship between the track surface alignment and the completed bridge alignment, the expression of the irregularity limit value for the completed bridge alignment was derived. A seven-span continuous steel truss girder bridge was taken as the research object. The irregularity amplitude of the completed bridge alignment within the sensitive wavelength range of the vehicle body was controlled according to the derived expression. A method for controlling the smoothness of the girder assembly alignment based on the target alignment of the completed bridge was proposed by combining Akima spline curve with the girder assembly curve. The research results show that the sensitive wavelength of the vehicle body is less than 200 m at driving speeds of trains ranging from 250 km/h to 350 km/h. If a seven-span continuous steel truss girder bridge is taken as an example, the irregularity limit values for the completed bridge alignment within the sensitive wavelength ranges of the vehicle body corresponding to speeds of 350 km/h, 300 km/h, and 250 km/h are 24 mm, 26 mm, and 29 mm, respectively. The irregularity amplitude within a 0–200 m wavelength range of the girder assembly alignment can be evaluated and controlled through the proposed method for controlling the smoothness of the girder assembly alignment.
| [1] |
李铭伟, 刘凯, 张上, 等. 高铁大跨度长联连续钢桥铺设无砟轨道的适应性[J]. 铁道建筑, 2024, 64(8): 84-88. doi: 10.3969/j.issn.1003-1995.2024.08.16
LI Mingwei, LIU Kai, ZHANG Shang, et al. Adaptability of laying ballastless track on long-span continuous steel bridge of high speed railway[J]. Railway Engineering, 2024, 64(8): 84-88. doi: 10.3969/j.issn.1003-1995.2024.08.16
|
| [2] |
王同军, 蒋辉, 尤明熙, 等. 基于模数驱动的高速铁路线路设备状态检测评估技术与实践[J]. 铁道运输与经济, 2024, 46(9): 1-14. doi: 10.16668/j.cnki.issn.1003-1421.2024.09.01
WANG Tongjun, JIANG Hui, YOU Mingxi, et al. Practice of high speed railway line equipment state detection and assessment technology driven by modulus[J]. Railway Transport and Economy, 2024, 46(9): 1-14. doi: 10.16668/j.cnki.issn.1003-1421.2024.09.01
|
| [3] |
王平, 高天赐, 汪鑫, 等. 基于拟合平纵断面的铁路特大桥梁线路平顺性评估[J]. 西南交通大学学报, 2020, 55(2): 231-237, 272. doi: 10.3969/j.issn.0258-2724.20180295
WANG Ping, GAO Tianci, WANG Xin, et al. Smoothness estimation of super-large bridges in railway line based on fitting railway plane and profile[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 231-237,272. doi: 10.3969/j.issn.0258-2724.20180295
|
| [4] |
孙宗磊, 张上, 刘凯, 等. 雄商高铁黄河特大桥主桥桥型方案比选[J]. 桥梁建设, 2023, 53(5): 118-124. doi: 10.20051/j.issn.1003-4722.2023.05.016
SUN Zonglei, ZHANG Shang, LIU Kai, et al. Main bridge type selection for a Huanghe River bridge of Xiongan-Shangqiu high-speed railway[J]. Bridge Construction, 2023, 53(5): 118-124. doi: 10.20051/j.issn.1003-4722.2023.05.016
|
| [5] |
杨东. 考虑施工不确定性的大跨高速铁路桥梁线形控制研究[J]. 铁道建筑技术, 2024(4): 145-147, 186. doi: 10.3969/j.issn.1009-4539.2024.04.033
YANG Dong. Research on alignment control of long-span high-speed railway bridge considering construction uncertainty[J]. Railway Construction Technology, 2024(4): 145-147,186. doi: 10.3969/j.issn.1009-4539.2024.04.033
|
| [6] |
杨玉龙. 跨铁路悬灌预应力混凝土T构转体关键技术研究[D]. 成都: 西南交通大学, 2021.
|
| [7] |
禹壮壮, 舒英杰, 陆粤, 等. 基于成桥施工偏差的大跨度铁路桥梁线路纵断面设计适应性分析[J]. 铁道标准设计, 2023, 67(3): 61-67, 73. doi: 10.13238/j.issn.1004-2954.202110110004
YU Zhuangzhuang, SHU Yingjie, LU Yue, et al. Design adaptability analysis of the route longitudinal section on long-span railway bridge based on construction deviation[J]. Railway Standard Design, 2023, 67(3): 61-67,73. doi: 10.13238/j.issn.1004-2954.202110110004
|
| [8] |
陈增顺. 大跨轨道斜拉桥合理线形控制关键技术研究[D]. 重庆: 重庆交通大学, 2014.
|
| [9] |
苑仁安, 张明金, 郑清刚, 等. 超大跨斜拉桥横桥向恒载非对称力学行为[J]. 西南交通大学学报, 2023, 58(3): 527-534. doi: 10.3969/j.issn.0258-2724.20210279
YUAN Ren’an ZHANG Mingjin, ZHENG Qinggang, et al. Mechanical characteristics of super-long-span cable-stayed bridge with transverse asymmetrical load[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 527-534. doi: 10.3969/j.issn.0258-2724.20210279
|
| [10] |
刘来君, 贺拴海, 宋一凡. 大跨径桥梁施工控制温度应力分析[J]. 中国公路学报, 2004, 17(1): 53-56. doi: 10.3321/j.issn:1001-7372.2004.01.012
LIU Laijun, HE Shuanhai, SONG Yifan. Analysis of temperature stress in control of long-span bridge construction[J]. China Journal of Highway and Transport, 2004, 17(1): 53-56. doi: 10.3321/j.issn:1001-7372.2004.01.012
|
| [11] |
陆粤, 王铭, 陈嵘, 等. 基于行车平稳性的大跨度铁路桥梁成桥线形评价方法研究[J]. 铁道标准设计, 2024, 68(6): 44-51. doi: 10.13238/j.issn.1004-2954.202210180008
LU Yue, WANG Ming, CHEN Rong, et al. Research on evaluation method of completed bridge alignment of long-span railway bridges based on riding quality[J]. Railway Standard Design, 2024, 68(6): 44-51. doi: 10.13238/j.issn.1004-2954.202210180008
|
| [12] |
单德山, 董皓, 顾晓宇. 大跨度斜拉桥施工控制的多元统计敏感性分析[J]. 中国公路学报, 2021, 34(12): 68-79. doi: 10.3969/j.issn.1001-7372.2021.12.006
SHAN Deshan, DONG Hao, GU Xiaoyu. Multivariate statistical sensitivity analysis for construction control of long-span cable-stayed bridges[J]. China Journal of Highway and Transport, 2021, 34(12): 68-79. doi: 10.3969/j.issn.1001-7372.2021.12.006
|
| [13] |
LI Q F, XIE J H. Bridge alignment prediction based on combination of grey model and BP neural network[J]. Applied Sciences, 2024, 14(17): 7955. doi: 10.3390/app14177955
|
| [14] |
LI X G, HUANG X S, DING P, et al. Study on the effect of temperature on the alignment of a long-span steel–concrete composite beam track cable-stayed bridge[J]. Applied Sciences, 2024, 14(22): 10688. doi: 10.3390/app142210688
|
| [15] |
李国龙, 孙宪夫, 高彦嵩, 等. 基于实车试验的大跨度桥梁轨道静态长波高低不平顺验收标准验证[J]. 铁道学报, 2024, 46(1): 120-128.
LI Guolong, SUN Xianfu, GAO Yansong, et al. Verification on acceptance standard for track static long-wave longitudinal level irregularity on long-span bridge based on real train test[J]. Journal of the China Railway Society, 2024, 46(1): 120-128.
|
| [16] |
陈林峰. 大跨度变截面曲线钢箱梁悬拼施工线形控制方法研究[D]. 重庆: 重庆交通大学, 2024.
|
| [17] |
舒英杰. 大跨度桥上轨道长波不平顺评价及线形优化方法研究[D]. 成都: 西南交通大学, 2023.
|
| [18] |
杨飞, 郝晓莉, 杨建, 等. 基于多车型CNN-GRU性能预测模型的轨道状态评价[J]. 西南交通大学学报, 2023, 58(2): 322-331. doi: 10.3969/j.issn.0258-2724.20211030
YANG Fei, HAO Xiaoli, YANG Jian, et al. Track condition evaluation for multi-vehicle performance prediction model based on convolutional neural network and gated recurrent unit[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 322-331. doi: 10.3969/j.issn.0258-2724.20211030
|
| [19] |
王铭, 李星星, 李小珍. 基于频域分析的高速列车侧风倾覆机理[J]. 西南交通大学学报, 2024, 59(2): 315-322, 342. doi: 10.3969/j.issn.0258-2724.20210571
WANG Ming, LI Xingxing, LI Xiaozhen. Mechanism of high-speed train crosswind overturning stability based on frequency domain analysis[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 315-322,342. doi: 10.3969/j.issn.0258-2724.20210571
|
| [20] |
ZHANG J F, ZHU Z X, ZHU X Y, et al. Study on the influence of uneven settlement and small curve radius on metro train running safety and riding comfort[J]. Structures, 2023, 51: 1806-1820. doi: 10.1016/j.istruc.2023.03.094
|
| [21] |
马卓然. 基于轨道几何和车辆响应检测数据的无砟轨道上拱识别评估方法[D]. 北京: 北京交通大学, 2023.
|
| [22] |
国家铁路局. 铁路轨道设计规范: TB 10082—2017[S]. 北京: 中国铁道出版社, 2017.
|
| [23] |
国家铁路局. 铁路桥涵设计规范: TB 10002—2017[S]. 北京: 中国铁道出版社, 2017.
|
| [24] |
LI X Z, HE H N, WANG M, et al. Influence of long-span bridge deformation on driving quality of high-speed trains[J]. International Journal of Rail Transportation, 2024, 12(4): 690-708. doi: 10.1080/23248378.2023.2198532
|
| [25] |
王心怡. 基于行车性能的大跨度铁路悬索桥局部刚度限值研究[D]. 成都: 西南交通大学, 2023.
|
| [26] |
孟令强, 郭传臣, 姜永彪. 大跨长联公铁两用连续钢桁梁桥成桥阶段温度效应研究[J]. 世界桥梁, 2023, 51(4): 77-84. doi: 10.20052/j.issn.1671-7767.2023.04.012
MENG Lingqiang, GUO Chuanchen, JIANG Yongbiao. Thermal effect on continuous steel truss girder rail-cum-road bridge with long spans and units after completion[J]. World Bridges, 2023, 51(4): 77-84. doi: 10.20052/j.issn.1671-7767.2023.04.012
|
| [27] |
中华人民共和国铁道部. 高速铁路无砟轨道线路维修规则(试行): TG/GW 115-2012[S]. 北京: 中国铁道出版社, 2012.
|