• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
LIANG Huanwei, XU Chunrong, LIN Yu, WU Jianli, XIA Fuyou, YAN Pengfan, ZHAO Canhui. Influence of Axial Compression Ratio on Hysteretic Properties of Steel Shell-Concrete Pylon[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240559
Citation: LIANG Huanwei, XU Chunrong, LIN Yu, WU Jianli, XIA Fuyou, YAN Pengfan, ZHAO Canhui. Influence of Axial Compression Ratio on Hysteretic Properties of Steel Shell-Concrete Pylon[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240559

Influence of Axial Compression Ratio on Hysteretic Properties of Steel Shell-Concrete Pylon

doi: 10.3969/j.issn.0258-2724.20240559
  • Received Date: 31 Oct 2024
  • Rev Recd Date: 29 Apr 2025
  • Available Online: 29 Sep 2025
  • To investigate the influence of the axial compression ratio on the hysteretic properties of the steel shell-concrete composite pylon, based on the composite pylon structure without longitudinal rebars, three hysteretic specimens were designed with the axial compression ratio as the research parameter. Through testing, the hysteresis curves, failure characteristics, and strain development of each specimen were obtained, and the mechanical behavior under large eccentric failure was analyzed. A finite element model was then established using ABAQUS for further analysis, and the boundary failure conditions of the pylon section were determined. Then, calculation formulas for the axial compression and bending moment of the section under boundary failure were proposed, and the effect of the steel ratio and concrete strength on the axial compression ratio under boundary failure was discussed. The research results indicate that under large eccentric failure, the section stiffness, peak bearing capacity, and energy dissipation capacity increase with the axial compression ratio. When the axial compression ratio increases from 0.056 to 0.166, the stiffness and the flexural capacity of the specimen improve by 20%. The boundary failure condition of the composite pylon section is defined by the yielding of the tensile-side steel shell and crushing of the compressive-side concrete. Under boundary failure, the section achieves its highest flexural capacity and stiffness. The proposed calculation formulas provide an accurate assessment of the axial compression ratio and flexural capacity under boundary failure. Both an increase in steel ratio and concrete strength lead to a reduction in the axial compression ratio at boundary failure. The axial compression ratio under boundary failure in the composite pylon section falls within the range of 0.44–0.56, making it well-suited for long-span suspension bridge towers with higher axial compression ratios.

     

  • loading
  • [1]
    欧智菁, 陈伟隆, 曹磊. UHPC预制管混凝土组合柱抗震性能[J]. 西南交通大学学报, 2025, 60(1): 63-71.

    OU Zhijing, CHEN Weilong, CAO Lei. Seismic performance of concrete composite columns of ultra-high performance concrete precast pipe[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 63-71.
    [2]
    ZHANG Y Y, LIU Y Q, XIN H H, et al. Numerical parametric study on ultimate load and ductility of concrete encased equal-leg angle steel composite columns[J]. Engineering Structures, 2018, 35(12): 134-142.
    [3]
    柯晓军, 苏益声, 商效瑀, 等. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134-142.

    KE Xiaojun, SU Yisheng, SHANG Xiaoyu, et al. Strength calculation and eccentric compressive test of steel tube-reinforced concrete composite columns[J]. Engineering Mechanics, 2018, 35(12): 134-142.
    [4]
    邓明科, 张阳玺, 陈尚城. 高延性混凝土加固框架柱抗震性能试验研究及其轴压比限值分析[J]. 土木工程学报, 2019, 52(2): 22-31, 65.

    DENG Mingke, ZHANG Yangxi, CHEN Shangcheng. Experimental research of the seismic performance of frame columns strengthened with high ductile concrete jacket and analysis of the limitation of axial load ratio[J]. China Civil Engineering Journal, 2019, 52(2): 22-31, 65.
    [5]
    林上顺, 林永捷, 张建帅, 等. ECC和预制榫卯混合连接装配式桥墩抗震试验及计算方法[J]. 西南交通大学学报, 2025, 60(2): 472-483.

    LIN Shangshun, LIN Yongjie, ZHANG Jianshuai, et al. Seismic testing and calculation method of assembled bridge piers with hybrid connection of engineered cementitious composites and assembled mortise-tenon joints[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 472-483.
    [6]
    陈爱军, 彭容新, 王解军, 等. 大跨连续刚构桥双肢薄壁墩抗震性能研究[J]. 振动与冲击, 2020, 39(1): 1-7.

    CHEN Aijun, PENG Rongxin, WANG Jiejun, et al. Aseismic performance of double-limb thin-walled piers of a large-span continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(1): 1-7.
    [7]
    CAO S S, JIANG L Z, WEI B. Numerical and experimental investigations on the Park-Ang damage index for high-speed railway bridge piers with flexure failures[J]. Engineering Structures, 2019, 201: 109851. doi: 10.1016/j.engstruct.2019.109851
    [8]
    张保硕, 张璐珂. 考虑轴压比和剪跨比的RC墩柱拟静力试验及地震易损性分析[J]. 建筑结构, 2023, 53(增2): 730-737.

    ZHANG Baoshuo, ZHANG Luke. Seismic vulnerability analysis and pseudo-static test of reinforced concrete piers with different axial compression ratios and shear span ratios[J]. Building Structure, 2023, 53(S2): 730-737.
    [9]
    邵长江, 漆启明, 韦旺, 等. 矩形混凝土空心墩延性抗震性能试验研究[J]. 西南交通大学学报, 2022, 57(1): 129-138, 157. doi: 10.3969/j.issn.0258-2724.20200092

    SHAO Changjiang, QI Qiming, WEI Wang, et al. Experimental study on ductile seismic performance of rectangular hollow concrete columns[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 129-138,157. doi: 10.3969/j.issn.0258-2724.20200092
    [10]
    王国清, 苏思博, 贾献卓, 等. 不同轴压比下低剪跨比插槽式管墩抗震性能研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(3): 65-71.

    WANG Guoqing, SU Sibo, JIA Xianzhuo, et al. Seismic performance of slot type pipe pier with low shear span ratio under different axial compression ratio[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(3): 65-71.
    [11]
    YU F, XU G S, NIU D T, et al. Experimental study on PVC-CFRP confined concrete columns under low cyclic loading[J]. Construction and Building Materials, 2018, 177: 287-302. doi: 10.1016/j.conbuildmat.2018.05.111
    [12]
    刘雪山, 李建中, 张宏杰, 等. 不同构造下的预制拼装钢管混凝土桥墩抗震性能试验[J]. 中国公路学报, 2021, 34(11): 116-128. doi: 10.3969/j.issn.1001-7372.2021.11.010

    LIU Xueshan, LI Jianzhong, ZHANG Hongjie, et al. Experimental analysis of seismic performance of precast assembled concrete filled steel tube piers under different structures[J]. China Journal of Highway and Transport, 2021, 34(11): 116-128. doi: 10.3969/j.issn.1001-7372.2021.11.010
    [13]
    苏思博, 张广达, 韩强, 等. 灌浆波纹管连接预制高强RC离心管墩抗震性能[J]. 中国公路学报, 2023, 36(9): 48-60.

    SU Sibo, ZHANG Guangda, HAN Qiang, et al. Seismic performance of high-strength centrifugal prefabricated RC hollow pipe column with grouted corrugated ducts connection[J]. China Journal of Highway and Transport, 2023, 36(9): 48-60.
    [14]
    AASHTO. AASHTO Guide Specifications for LRFD Seismic Bridge Design (2nd ed. )[S]. Washington D. C.: American Association of State Highway and Transportation Officials, 2011.
    [15]
    European Committee for Standardization (CEN). Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges (EN 1998-2: 2005)[S]. Brussels: CEN, 2005.
    [16]
    中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.
    [17]
    董俊, 曾永平, 冷丹. 九度地震区高速铁路简支梁合理减隔震体系分析[J]. 哈尔滨工业大学学报, 2023, 55(11): 115-124, 134. doi: 10.11918/202109078

    DONG Jun, ZENG Yongping, LENG Dan. Analysis of reasonable seismic isolation system for high-speed railway simply supported bridge in nine-degree seismic regions[J]. Journal of Harbin Institute of Technology, 2023, 55(11): 115-124, 134. doi: 10.11918/202109078
    [18]
    李兵, 姚云龙, 郭立成, 等. 佛山富龙西江特大桥主桥设计[J]. 桥梁建设, 2023, 53(6): 127-134.

    LI Bing, YAO Yunlong, GUO Licheng, et al. Design of main bridge of fulong Xijiang River bridge in Foshan[J]. Bridge Construction, 2023, 53(6): 127-134.
    [19]
    肖海珠, 高宗余, 陆勤丰, 等. 南京仙新路长江大桥主桥结构设计[J]. 桥梁建设, 2024, 54(2): 1-7.

    XIAO Haizhu, GAO Zongyu, LU Qinfeng, et al. Structural design of main bridge of Nanjing Xianxin Road Changjiang River bridge[J]. Bridge Construction, 2024, 54(2): 1-7.
    [20]
    CUI B, WU H L, ZHAO C H, et al. Steel–concrete composite cable-stayed bridge: main bridge of the Jiangxinzhou Yangtze River bridge at Nanjing[J]. Structural Engineering International, 2023, 33(1): 107-114. doi: 10.1080/10168664.2021.1999191
    [21]
    刘永健, 孙立鹏, 周绪红, 等. 钢管混凝土桥塔工程应用与研究进展[J]. 中国公路学报, 2022, 35(6): 1-21.

    LIU Yongjian, SUN Lipeng, ZHOU Xuhong, et al. Progress in the application of research on concrete-filled steel tubular bridge towers[J]. China Journal of Highway and Transport, 2022, 35(6): 1-21.
    [22]
    朱尧于, 聂鑫, 樊健生, 等. 薄开孔板连接件抗拔性能试验及理论研究[J]. 中国公路学报, 2018, 31(9): 65-74.

    ZHU Yaoyu, NIE Xin, FAN Jiansheng, et al. Experimental and theoretical study on pullout resistance of single-hole thin-rib perfobond connectors[J]. China Journal of Highway and Transport, 2018, 31(9): 65-74.
    [23]
    CUI B, WU H L, ZHAO C H, et al. Design concept and experimental study of steel shell–concrete composite pylon[J]. Structural Engineering International, 2024, 34(2): 304-316. doi: 10.1080/10168664.2023.2190763
    [24]
    梁桓玮, 许春荣, 林昱, 等. 带肋直钩钢筋剪力键剪切与拔出性能研究[J/OL]. 西南交通大学学报, 2024: 1-9. (2024-07-15). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240710008&dbname=CJFD&dbcode=CJFQ.
    [25]
    孙立鹏, 刘永健, 张宁, 等. 单侧约束三边支承高强钢板的局部屈曲性能[J]. 工程力学, 2021, 38(7): 19-29. doi: 10.6052/j.issn.1000-4750.2020.06.0407

    SUN Lipeng, LIU Yongjian, ZHANG Ning, et al. Local buckling behavior of high strength steel plate with unilateral restraint and trilateral support[J]. Engineering Mechanics, 2021, 38(7): 19-29. doi: 10.6052/j.issn.1000-4750.2020.06.0407
    [26]
    聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011.
    [27]
    韩林海. 钢管混凝土结构——理论与实践[M]. 3版. 北京: 科学出版社, 2016.
    [28]
    中华人民共和国住房和城乡建设部. GB 50010—2010 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(77) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return