• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZENG Yongping, LIU Liwei, TAO Qi, WAN Xing, ZHANG Xun, JIA Hongyu. Analysis of Impact Effect of Cable Breakage in Half-Through Railway Arch Bridges with CFRP Cables[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240555
Citation: ZENG Yongping, LIU Liwei, TAO Qi, WAN Xing, ZHANG Xun, JIA Hongyu. Analysis of Impact Effect of Cable Breakage in Half-Through Railway Arch Bridges with CFRP Cables[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240555

Analysis of Impact Effect of Cable Breakage in Half-Through Railway Arch Bridges with CFRP Cables

doi: 10.3969/j.issn.0258-2724.20240555
  • Received Date: 29 Oct 2024
  • Rev Recd Date: 28 Feb 2025
  • Available Online: 10 Jul 2025
  • To study the effect of cable breakage on the impact response of concrete-filled steel tube arch bridges and the difference in safety factor requirements between carbon fiber reinforced polymer (CFRP) cables and steel cables, the dynamic response of a railway bridge under accidental cable breakage was analyzed. A spatial finite element model was established by ANSYS. The force characteristic variations of the residual structure of the arch bridge under five cable breakage conditions were studied based on the equivalent unloading method. The impact sensitivity of the structure after cable breakage was evaluated by dynamic amplification factor (DDAF) and demand capacity ratio (DDCR). The effects of different cable materials, namely steel cables and carbon cables, on the dynamic response of the arch bridge were compared. The results show that the dynamic response of the main girder and the stress of the arch rib are greatly affected by the position and number of cable breakages. The redistribution ratio of the cable force is inversely proportional to the distance from the broken cable area and the cable length and directly proportional to the number of failed cables. The DDAF of the arch bridge with carbon cables is higher than that of the arch bridge with steel cables, ranging from 1.19 to 1.43. The DDCR of the remaining cable after cable breakage does not exceed 1, indicating large redundancy. Compared with bridges with steel cables, arch bridges with carbon cables require smaller safety factors under cable breakage conditions, ranging from 1.0 to 1.5.

     

  • [1]
    LIU Z X, GUO T, YU X M, et al. Corrosion fatigue and electrochemical behaviour of steel wires used in bridge cables[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(1): 63-73.
    [2]
    ZHAO Y, GUO X L, SU B T, et al. Evaluation of flexible central buckles on short suspenders’ corrosion fatigue degradation on a suspension bridge under traffic load[J]. Materials, 2023, 16(1): 290.1-290.17.
    [3]
    WANG B T, JIA Y D, ZHAO H J, et al. Research on the dynamic response of a continuous steel box girder bridge based on the ANSYS platform[J]. Sustainability, 2022, 14(17): 10638.1-10638.22.
    [4]
    WANG S F, YU L, YANG F, et al. Effect of steel fiber distribution on the mechanical properties of UHPC caused by vehicle-bridge coupling vibration[J]. Composites Part B: Engineering, 2022, 245: 110201.1-110201.1.
    [5]
    SU J X, ZHANG J P, ZHOU J Y, et al. Fatigue life assessment of suspenders in tied-arch bridges under random traffic loads and environmental corrosion[J]. International Journal of Civil Engineering, 2023, 21(3): 523-540. doi: 10.1007/s40999-022-00792-3
    [6]
    ZHANG Y, FANG Z, JIANG R N, et al. Static performance of a long-span concrete cable-stayed bridge subjected to multiple-cable loss during construction[J]. Journal of Bridge Engineering, 2020, 25(3):04020002.1-04020002.16.
    [7]
    LIU Z, NARASIMHAN H, KOTSOVINOS P, et al. Enhancing fire resilience of cable-supported bridges: current knowledge and research gaps[J]. Structural Engineering International, 2023, 33(4): 548-557. doi: 10.1080/10168664.2022.2164756
    [8]
    YIN T, SUN X S, WANG Y J, et al. Corrosion investigation of rock anchors served over 10 years in underground powerhouse of a hydropower station[J]. Advances in Materials Science and Engineering, 2022, 13:4905010.1-4905010.14.
    [9]
    ZHANG L G, LIANG Z Z, LI S L. Effect of current density on the cathodic protection efficiency and mechanical properties of pre-stressed high-strength steel wires for stay cable[J]. Construction and Building Materials, 2022, 314: 125671.1-125671.11.
    [10]
    SCATTARREGGIA N, ORGNONI A, PINHO R, et al. Failure analysis of the impact of a falling object on a bridge deck[J]. Engineering Failure Analysis, 2023, 148: 107229.1-107229.21.
    [11]
    魏建东. 宜宾小南门大桥的抢修加固与恢复工程[J]. 公路,2003,48(4): 34-38. doi: 10.3969/j.issn.0451-0712.2003.04.010

    WEI Jiandong. Urgent reinforcement and restoration of xiaonanmen bridge in Yibin City[J]. Highway, 2003, 48(4): 34-38. doi: 10.3969/j.issn.0451-0712.2003.04.010
    [12]
    邢丽丽,常忠义. 国内近期桥梁垮塌案例分析与启示[J]. 福建建材,2011(9): 27-28.
    [13]
    LIU P, LU H P, CHEN Y X, et al. Fatigue analysis of long-span steel truss arched bridge part II: fatigue life assessment of suspenders subjected to dynamic overloaded moving vehicles[J]. Metals, 2022, 12(6): 1035.1-1035.11.
    [14]
    NAKAMURA S, MIYACHI K. Ultimate strength and chain-reaction failure of hangers in tied-arch bridges[J]. Structural Engineering International, 2021, 31(1): 136-146. doi: 10.1080/10168664.2020.1775537
    [15]
    陈宝春,范冰辉,余印根,等. 钢管混凝土拱桥强健性设计[J]. 桥梁建设,2016,46(6): 88-93.

    CHEN Baochun, FAN Binghui, YU Yingen, et al. Robustness design of concrete-filled steel tube arch bridges[J]. Bridge Construction, 2016, 46(6): 88-93.
    [16]
    FAN B H, SU J Z, CHEN B C. Condition evaluation for through and half-through arch bridges considering robustness of suspended deck systems[J]. Advances in Structural Engineering, 2021, 24(5): 962-976. doi: 10.1177/1369433220945835
    [17]
    曲兆乐,石雪飞,李小祥,等. 斜拉桥拉索断裂损伤的动力过程模拟方法研究[J]. 结构工程师,2009,25(6): 89-92. doi: 10.3969/j.issn.1005-0159.2009.06.017

    QU Zhaole, SHI Xuefei, LI Xiaoxiang, et al. Research on dynamic simulation methodology for cable loss of cable-stayed bridges[J]. Structural Engineers, 2009, 25(6): 89-92. doi: 10.3969/j.issn.1005-0159.2009.06.017
    [18]
    李岩,崔石林,陈逸民. 考虑模态更新的断索作用下斜拉桥动力响应分析方法[J]. 哈尔滨工业大学学报,2024,56(3): 1-8. doi: 10.11918/202205002

    LI Yan, CUI Shilin, CHEN Yimin. Dynamic response analysis method of cable-stayed bridge under cable broken based on modal updating[J]. Journal of Harbin Institute of Technology, 2024, 56(3): 1-8. doi: 10.11918/202205002
    [19]
    陈康明,吴庆雄,罗健平,等. 考虑吊杆断裂动力作用的钢管混凝土拱桥等效静力计算方法[J]. 土木工程学报,2023,56(6): 63-74.

    CHEN Kangming, WU Qingxiong, LUO Jianping, et al. Equivalent static calculation method for concrete filled steel tubular arch bridges considering dynamic effect of hanger fracture[J]. China Civil Engineering Journal, 2023, 56(6): 63-74.
    [20]
    邱文亮,吴广润. 悬索桥吊索断裂动力响应分析的有限元模拟方法研究[J]. 湖南大学学报(自然科学版),2021,48(11): 22-30.

    QIU Wenliang, WU Guangrun. Research on simulation method of dynamic response analysis for suspension bridges subjected to hanger-breakage events[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 22-30.
    [21]
    HUO J H, HUANG Y H, WANG J L, et al. Numerical analysis on the impact effect of cable breaking for a new type arch bridge[J]. Buildings, 2023, 13(3): 753.1-753.23.
    [22]
    吴庆雄,罗健平,陈康明,等. 吊杆断裂破坏安全极限状态下中、下承式拱桥悬吊桥面系简化计算方法[J]. 土木工程学报,2024,57(10): 57-70.

    WU Qingxiong, LUO Jianping, CHEN Kangming, et al. Simplified calculation method for suspension bridge deck system of half-through and through arch bridge under safety limit condition of suspender fracture[J]. China Civil Engineering Journal, 2024, 57(10): 57-70.
    [23]
    ZHANG C, HAO H, BI K M, et al. Dynamic amplification factors for a system with multiple-degrees-of-freedom[J]. Earthquake Engineering and Engineering Vibration, 2020, 19(2): 363-375. doi: 10.1007/s11803-020-0567-9
    [24]
    刘永健,刘江,周绪红,等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报,2024,24(3): 1-24.

    LIU Yongjian, LIU Jiang, ZHOU Xuhong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24.
    [25]
    RUIZ-TERAN A M, APARICIO A C. Response of under-deck cable-stayed bridges to the accidental breakage of stay cables[J]. Engineering Structures, 2009, 31(7): 1425-1434. doi: 10.1016/j.engstruct.2009.02.027
    [26]
    霍建宏. 斜拱曲梁异型拱桥断索响应模型试验与有限元分析[D]. 广州:广州大学,2023.
    [27]
    黄永辉,霍建宏,傅继阳,等. 拱桥断索冲击响应模型试验与有限元分析[J]. 中国公路学报,2024,37(5): 138-150.

    HUANG Yonghui, HUO Jianhong, FU Jiyang, et al. Model test and finite element analysis of arch bridge response to cable failure[J]. China Journal of Highway and Transport, 2024, 37(5): 138-150.
  • Relative Articles

    [1]CHEN Xuli, XIANG Huoyue, TIAN Xiangfu, LI Yongle, CAO Wenjie. Influence of Vertical Stiffness of Continuous Girder on Dynamic Responses of High-Speed Electromagnetic Suspension Train and Bridge[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230382
    [2]WANG Tao, ZHANG Xingbiao, WANG Lu. Dynamic Response of Cable-Stayed Bridge and Trains on Bridge Under Cable Breaking Conditions[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 627-636. doi: 10.3969/j.issn.0258-2724.20220266
    [3]CUI Xuhao, XIAO Hong. Dynamic Characteristics Analysis of Hardening Railway Ballast Bed Based on Discrete Element Method[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1197-1204. doi: 10.3969/j.issn.0258-2724.20200113
    [4]LI Xiaozhen, YANG Dehai, LEI Kangning, XIAO Lin, DAI Shengyong. Seismic Response of Continuous Beam-Arch Bridge under Spatially Varying Ground Motions[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 221-228. doi: 10.3969/j.issn.0258-2724.20190400
    [5]SHAO Yongbo, ZHU Hongmei, YANG Dongping. Static Bearing Capacity Analysis of CFRP-Reinforced Short CHS Steel Tubular Columns under Axial Compression[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 167-174. doi: 10.3969/j.issn.0258-2724.20180527
    [6]LI Huadong, ZUO Mingyu, LI Pu, ZHAO Jinheng. Dynamic Response Analysis of Passive Flexible Protection System under Impact of Rockfalls[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1297-1305. doi: 10.3969/j.issn.0258-2724.20190514
    [7]CHEN Linya, LIAO Chencong, DUAN Lunliang, ZHENG Dongsheng. Influence of Porous Seabed Characteristics on Wave Forces Acting on Monopile[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 328-335. doi: 10.3969/j.issn.0258-2724.20170800
    [8]FANG Chen, LI Yongle, XIANG Huoyue, ZHANG Jingyu. Dynamic Response Influences of Combination Loads of Wind, Wave, and Current on Sea-Crossing Bridges[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 908-914, 922. doi: 10.3969/j.issn.0258-2724.20170716
    [9]GOU Hongye, SHI Xiaoyu, ZHOU Wen, KANG Rui. Coupled Train-Bridge Vibration and Dynamic Characteristics of Long-Span T-Shaped Rigid Frame Railway Bridge[J]. Journal of Southwest Jiaotong University, 2018, 53(4): 679-686. doi: 10.3969/j.issn.0258-2724.2018.04.003
    [10]WU Anjie, YANG Wanli, ZHAO Lei. Dynamic Response Analysis of Bridge Pier in Deep Water under Combined Loads of Wave, Current and Earthquake[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 79-87. doi: 10.3969/j.issn.0258-2724.2018.01.010
    [11]XU Baishun, MA Ming, QIAN Yongjiu, TANG Jishun, ZHANG Fang. Numerical Simulation Analysis of RC Beams Strengthened with CFRP Using Viscoelasticity Constitutive[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 994-1000. doi: 10.3969/j.issn.0258-2724.2017.05.021
    [12]ZHENG Shuangying, YANG Lizhong. Numerical Experiments of Dynamic Response of Buried Gas Pipeline under the Action of Seismic Waves Induced by Tunnel Blasting[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 264-271. doi: 10.3969/j.issn.0258-2724.2017.02.008
    [13]ZHANG Yingbin, YU Pengcheng, ZHAO Xingquan. Analytical Solutions of Earthquake Dynamic Responses of Trapezoid-Like Mountain[J]. Journal of Southwest Jiaotong University, 2015, 28(3): 435-441. doi: 10.3969/j.issn.0258-2724.2015.03.008
    [14]LI Cuijuan, XU Xun, QIANG Shizhong. Dynamic Responses of Super-Long-Span Suspension Bridge with CFRP Cables under Different Structural Design Parameters[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 419-424. doi: 10.3969/j.issn.0258-2724.2014.03.008
    [15]WANG Ping, XU Hao, CHEN Rong, XU Jingmang. Effects Analysis of Cracking of CRTSⅡ Slab Track on Subgrade[J]. Journal of Southwest Jiaotong University, 2012, 25(6): 929-934. doi: 10.3969/j.issn.0258-2724.2012.06.004
    [16]CHEN Wenwu, LIPengfei, LIANGTao, ZHANGYuxiang, ZHANGJingke. Dynamic Responses of East Temple Pagoda of Subashi Temple under Seismic Loads[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 373-378. doi: 10.3969/j.issn.0258-2724.2011.03.003
    [17]WU Zeng, LIU Xueyi, YAO Lingkan. Fractal Description of Rail Corrugation and Its Dynamic Simulation[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 721-725.
    [18]ZHAO Huaiyun, LIU Jianxin, ZHAI Wanming. Effects of Harmonic Torques of Asynchronous Traction Motor on Locomotive Dynamics[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 269-273.
    [19]HUO Hong-fa, YU Qin, HUANG Xie-qing. Numerical Simulation of Dynamical Responses of Assembled Vessel to Explosion Impact Load[J]. Journal of Southwest Jiaotong University, 2003, 16(5): 513-516.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.0 %FULLTEXT: 34.0 %META: 53.2 %META: 53.2 %PDF: 12.8 %PDF: 12.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.1 %其他: 19.1 %上海: 2.1 %上海: 2.1 %北京: 2.1 %北京: 2.1 %十堰: 2.1 %十堰: 2.1 %南京: 2.1 %南京: 2.1 %天津: 2.1 %天津: 2.1 %常州: 2.1 %常州: 2.1 %扬州: 2.1 %扬州: 2.1 %杭州: 2.1 %杭州: 2.1 %武汉: 2.1 %武汉: 2.1 %济南: 4.3 %济南: 4.3 %淄博: 2.1 %淄博: 2.1 %温州: 2.1 %温州: 2.1 %石家庄: 10.6 %石家庄: 10.6 %芒廷维尤: 21.3 %芒廷维尤: 21.3 %芝加哥: 2.1 %芝加哥: 2.1 %西宁: 6.4 %西宁: 6.4 %贵阳: 2.1 %贵阳: 2.1 %运城: 2.1 %运城: 2.1 %邯郸: 2.1 %邯郸: 2.1 %鄂州: 2.1 %鄂州: 2.1 %酒泉: 2.1 %酒泉: 2.1 %重庆: 2.1 %重庆: 2.1 %其他上海北京十堰南京天津常州扬州杭州武汉济南淄博温州石家庄芒廷维尤芝加哥西宁贵阳运城邯郸鄂州酒泉重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article views(24) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return