| Citation: | LI Qian, WANG Xudong, ZHOU Xingye, CHEN Meng, LIU Xu. Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures[J]. Journal of Southwest Jiaotong University, 2025, 60(5): 1203-1212, 1219. doi: 10.3969/j.issn.0258-2724.20240516 |
To reveal the performance transformation characteristics of asphalt mixtures under high temperature and propose corresponding indices for high temperature performance evaluation, the dynamic modulus and phase angle of three fine-grained asphalt mixtures used in RIOHTrack full-scale track were tested under different temperatures, frequencies, and strains. Based on the relationship between the dynamic modulus and phase angle, a characteristic dynamic modulus index that can reflect the high temperature performance transformation of asphalt mixtures was proposed. Dynamic modulus-phase angle curves were fitted by the Bigaussian model to determine the values of the characteristic dynamic modulus and the performance decline rates of three mixtures. Based on this, a comprehensive evaluation index
| [1] |
COOLEY J L A, KANDHAL P S, BUCHANAN M S, et al. Loaded wheel testers in the United States: state of the practice[M]. Washington, D. C.: Transportation Research Board, 2000.
|
| [2] |
ZHANG J, ALVAREZ A E, LEE S I, et al. Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation[J]. Construction and Building Materials, 2013, 44: 391-398. doi: 10.1016/j.conbuildmat.2013.03.013
|
| [3] |
WALUBITA L F, FUENTES L, LEE S I, et al. Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT[J]. Construction and Building Materials, 2019, 215: 737-753. doi: 10.1016/j.conbuildmat.2019.04.250
|
| [4] |
VAMSIKRISHNA G, SINGH D. Exploring potential of Marshall-RT as simple performance test to evaluate rutting resistance of asphalt mixtures[J]. International Journal of Pavement Engineering, 2023, 24(1): 2265030.1-2265030.16.
|
| [5] |
张怀志, 王迪, 杨彦海. 沥青混合料高温性能评价指标区分度研究[J]. 建筑材料学报, 2021, 24(6): 1248-1254. doi: 10.3969/j.issn.1007-9629.2021.06.017
ZHANG Huaizhi, WANG Di, YANG Yanhai. High temperature performance evaluation indices of asphalt mixtures[J]. Journal of Building Materials, 2021, 24(6): 1248-1254. doi: 10.3969/j.issn.1007-9629.2021.06.017
|
| [6] |
李岳, 刘文俊, 蔡靖, 等. 基于足尺试验的机场沥青道面轮辙发展与预测[J]. 西南交通大学学报, 2023, 58(6): 1378-1384. doi: 10.3969/j.issn.0258-2724.20210606
LI Yue, LIU Wenjun, CAI Jing, et al. Development and prediction of ruts in airport asphalt pavement based on full-scale test[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1378-1384. doi: 10.3969/j.issn.0258-2724.20210606
|
| [7] |
王端宜, 黎侃, 蔡旭. 基于集料接触特性的沥青混合料抗车辙性能评价[J]. 华南理工大学学报(自然科学版), 2012, 40(11): 121-126, 154. doi: 10.3969/j.issn.1000-565X.2012.11.018
WANG Duanyi, LI Kan, CAI Xu. Evaluation of rutting resistance of asphalt mixture based on aggregate contact characteristics[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(11): 121-126, 154. doi: 10.3969/j.issn.1000-565X.2012.11.018
|
| [8] |
刘斌清, 吕大春, 张争奇, 等. 高黏改性沥青高温黏弹特性指标区分度分析[J]. 建筑材料学报, 2020, 23(3): 692-699.
LIU Binqing, LU Dachun, ZHANG Zhengqi, et al. Differentiation analysis of viscoelastic properties of high-viscosity modified asphalt at high temperature[J]. Journal of Building Materials, 2020, 23(3): 692-699.
|
| [9] |
孙立军, 等. 沥青路面结构行为学[M]. 上海: 同济大学出版社, 2013.
|
| [10] |
BOARD T R. Simple performance tester for superpave mix design: first-article development and evaluation[M]. Washington, D. C.: Transportation Research Board, 2003.
|
| [11] |
APEAGYEI A K. Rutting as a function of dynamic modulus and gradation[J]. Journal of Materials in Civil Engineering, 2011, 23(9): 1302-1310. doi: 10.1061/(ASCE)MT.1943-5533.0000309
|
| [12] |
ZHANG Y, LUO X, ONIFADE I, et al. Mechanical evaluation of aggregate gradation to characterize load carrying capacity and rutting resistance of asphalt mixtures[J]. Construction and Building Materials, 2019, 205: 499-510. doi: 10.1016/j.conbuildmat.2019.01.218
|
| [13] |
陈光伟, 刘黎萍, 苏凯, 等. 基于沥青路面抗剪性能的车辙预估模型标定[J]. 西南交通大学学报, 2013, 48(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013
CHEN Guangwei, LIU Liping, SU Kai, et al. Rutting model considering shear behavior of asphalt pavement[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013
|
| [14] |
江训利, 何必想, 刘港归, 等. 基于塑性活化能的沥青混合料抗车辙性能优化[J]. 北京工业大学学报, 2024, 50(4): 486-497.
JIANG Xunli, HE Bixiang, LIU Ganggui, et al. Optimization of anti-rutting of asphalt mixtures based on plastic activation energy[J]. Journal of Beijing University of Technology, 2024, 50(4): 486-497.
|
| [15] |
庄恢将, 钟皓白, 王嘉琪, 等. SBS改性沥青及其混合料高温性能试验对比分析[J]. 公路工程, 2023, 48(1): 116-122.
ZHUANG Huijiang, ZHONG Haobai, WANG Jiaqi, et al. The comparative analysis of high temperature performance test of SBS modified asphalt and its mixture[J]. Highway Engineering, 2023, 48(1): 116-122.
|
| [16] |
ANDERSON J, CHRISTENSEN D W. SHRP-A-369 binder characterization and evaluation[R]. Washington, D. C.: National Research Council, 1994.
|
| [17] |
谭忆秋, 李晓琳, 吴建涛, 等. 温度及荷载频率对沥青-集料交互作用能力的影响[J]. 中国公路学报, 2012, 25(3): 65-72. doi: 10.3969/j.issn.1001-7372.2012.03.005
TAN Yiqiu, LI Xiaolin, WU Jiantao, et al. Influence of temperature and loading frequency on the interaction ability of asphalt and aggregate[J]. China Journal of Highway and Transport, 2012, 25(3): 65-72. doi: 10.3969/j.issn.1001-7372.2012.03.005
|
| [18] |
牛岩, 张晨晨, 王旭东, 等. 沥青混合料玻璃态转变温度的外部影响因素[J]. 哈尔滨工业大学学报, 2019, 51(9): 137-143. doi: 10.11918/j.issn.0367-6234.201708124
NIU Yan, ZHANG Chenchen, WANG Xudong, et al. External influence factors on the glass transition temperature of asphalt mixture[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 137-143. doi: 10.11918/j.issn.0367-6234.201708124
|
| [19] |
谭忆秋. 沥青与沥青混合料[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007.
|
| [20] |
YANG G, WANG X, ZHOU X, et al. Experimental study on the phase transition characteristics of asphalt mixture for stress absorbing membrane interlayer[J]. Materials, 2020, 13(2): 474.1-474.13.
|
| [21] |
王筵铸. 沥青黏聚-黏附性和相态转变特性及其对混合料性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
| [22] |
王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技, 2017, 34(6): 30-37.
WANG Xudong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37.
|
| [23] |
梁明, 王川, 栾学昊, 等. 聚合物改性沥青微细观相态结构的流变学响应特征[J]. 中国石油大学学报(自然科学版), 2023, 47(1): 183-188. doi: 10.3969/j.issn.1673-5005.2023.01.021
LIANG Ming, WANG Chuan, LUAN Xuehao, et al. Rheological response characteristics of polymer modified asphalt microstructure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 183-188. doi: 10.3969/j.issn.1673-5005.2023.01.021
|
| [24] |
杨挺青, 徐平, 罗文波, 等. 黏弹性理论与应用[M]. 北京: 科学出版社, 2004.
|
| [25] |
王旭东, 张蕾. 宽刚度域基层长寿命沥青路面设计导论[M]. 北京: 人民交通出版社, 2024.
|