• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
LI Qian, WANG Xudong, ZHOU Xingye, CHEN Meng, LIU Xu. Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240516
Citation: LI Qian, WANG Xudong, ZHOU Xingye, CHEN Meng, LIU Xu. Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240516

Characteristics of High Temperature Performance Transformation and Rutting Resistance Index Construction of Asphalt Mixtures

doi: 10.3969/j.issn.0258-2724.20240516
  • Received Date: 12 Oct 2024
  • Rev Recd Date: 10 Mar 2025
  • Available Online: 20 May 2025
  • To reveal the performance transformation characteristics of asphalt mixtures under high temperature and propose corresponding indices for high temperature performance evaluation, the dynamic modulus and phase angle of three fine-grained asphalt mixtures used in RIOHTrack full-scale track were tested under different temperatures, frequencies, and strains. Based on the relationship between the dynamic modulus and phase angle, a characteristic dynamic modulus index that can reflect the high temperature performance transformation of asphalt mixtures was proposed. Dynamic modulus-phase angle curves were fitted by the Bigaussian model to determine the values of the characteristic dynamic modulus and the performance decline rates of three mixtures. Based on this, a comprehensive evaluation index Eww for rutting resistance performance was proposed, which could reflect the characteristic dynamic modulus, phase angle, and performance decline rate at the same time. The reliability of this evaluation index was verified by the observation of pavement rutting deformation with 100 million loads via the full-scale track. The results show that the dynamic moduli corresponding to the maximum phase angles obtained under different experimental conditions are relatively close. The proposed characteristic dynamic modulus index is consistent with the rutting test results, indicating that the index can reflect the rutting resistance performance of the mixtures. The correlation coefficient of the dynamic modulus-phase angle curve fitted by the Bigaussian model reaches over 96%, which demonstrates the high reliability of the method. Compared with laboratory rutting tests, the comprehensive evaluation index proposed in this article is consistent with the rutting detection results of the full-scale test track, indicating that it is necessary to consider the high temperature performance transformation characteristics of asphalt mixtures when rutting resistance performance is evaluated.

     

  • [1]
    COOLEY J L A, KANDHAL P S, BUCHANAN M S, et al. Loaded wheel testers in the United States: state of the practice [M]. Washington, D. C. : Transportation Research Board, 2000.
    [2]
    ZHANG J, ALVAREZ A E, LEE S I, et al. Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation[J]. Construction and Building Materials, 2013, 44: 391-398. doi: 10.1016/j.conbuildmat.2013.03.013
    [3]
    WALUBITA L F, FUENTES L, LEE S I, et al. Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT[J]. Construction and Building Materials, 2019, 215: 737-753. doi: 10.1016/j.conbuildmat.2019.04.250
    [4]
    VAMSIKRISHNA G, SINGH D. Exploring potential of Marshall-RT as simple performance test to evaluate rutting resistance of asphalt mixtures[J]. International Journal of Pavement Engineering, 2023, 24(1): 2265030.1-2265030.16
    [5]
    张怀志,王迪,杨彦海. 沥青混合料高温性能评价指标区分度研究[J]. 建筑材料学报,2021,24(6): 1248-1254. doi: 10.3969/j.issn.1007-9629.2021.06.017

    ZHANG Huaizhi, WANG Di, YANG Yanhai. High temperature performance evaluation indices of asphalt mixtures[J]. Journal of Building Materials, 2021, 24(6): 1248-1254. doi: 10.3969/j.issn.1007-9629.2021.06.017
    [6]
    李岳,刘文俊,蔡靖,等. 基于足尺试验的机场沥青道面轮辙发展与预测[J]. 西南交通大学学报,2023,58(6): 1378-1384. doi: 10.3969/j.issn.0258-2724.20210606

    LI Yue, LIU Wenjun, CAI Jing, et al. Development and prediction of ruts in airport asphalt pavement based on full-scale test[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1378-1384. doi: 10.3969/j.issn.0258-2724.20210606
    [7]
    王端宜,黎侃,蔡旭. 基于集料接触特性的沥青混合料抗车辙性能评价[J]. 华南理工大学学报(自然科学版),2012,40(11): 121-126,154. doi: 10.3969/j.issn.1000-565X.2012.11.018

    WANG Duanyi, LI Kan, CAI Xu. Evaluation of rutting resistance of asphalt mixture based on aggregate contact characteristics[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(11): 121-126,154. doi: 10.3969/j.issn.1000-565X.2012.11.018
    [8]
    刘斌清,吕大春,张争奇,等. 高黏改性沥青高温黏弹特性指标区分度分析[J]. 建筑材料学报,2020,23(3): 692-699.

    LIU Binqing, LU Dachun, ZHANG Zhengqi, et al. Differentiation analysis of viscoelastic properties of high-viscosity modified asphalt at high temperature[J]. Journal of Building Materials, 2020, 23(3): 692-699.
    [9]
    孙立军,等. 沥青路面结构行为学[M]. 上海:同济大学出版社,2013.
    [10]
    BOARD T R. Simple performance tester for superpave mix design: first-article development and evaluation[M]. Washington, D. C. : Transportation Research Board, 2003.
    [11]
    APEAGYEI A K. Rutting as a function of dynamic modulus and gradation[J]. Journal of Materials in Civil Engineering, 2011, 23(9): 1302-1310. doi: 10.1061/(ASCE)MT.1943-5533.0000309
    [12]
    ZHANG Y, LUO X, ONIFADE I, et al. Mechanical evaluation of aggregate gradation to characterize load carrying capacity and rutting resistance of asphalt mixtures[J]. Construction and Building Materials, 2019, 205: 499-510. doi: 10.1016/j.conbuildmat.2019.01.218
    [13]
    陈光伟,刘黎萍,苏凯,等. 基于沥青路面抗剪性能的车辙预估模型标定[J]. 西南交通大学学报,2013,48(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013

    CHEN Guangwei, LIU Liping, SU Kai, et al. Rutting model considering shear behavior of asphalt pavement[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 672-677. doi: 10.3969/j.issn.0258-2724.2013.04.013
    [14]
    江训利,何必想,刘港归,等. 基于塑性活化能的沥青混合料抗车辙性能优化[J/OL]. 北京工业大学学报,2023:1-13. [2025-03-10]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=BJGD20230711009&dbname=CJFD&dbcode=CJFQ.

    JIANG Xunli, HE Bixiang, LIU Ganggui, et al. Optimization of rutting resistance of asphalt mixture based on plastic activation energy[J/OL]. China Industrial Economics, 2023: 1-13. [2025-03-10]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=BJGD20230711009&dbname=CJFD&dbcode=CJFQ.
    [15]
    庄恢将,钟皓白,王嘉琪,等. SBS改性沥青及其混合料高温性能试验对比分析[J]. 公路工程,2023,48(1): 116-122.

    ZHUANG Huijiang, ZHONG Haobai, WANG Jiaqi, et al. The comparative analysis of high temperature performance test of SBS modified asphalt and its mixture[J]. Highway Engineering, 2023, 48(1): 116-122.
    [16]
    ANDERSON J, CHRISTENSEN D W. SHRP-A-369 binder characterization and evaluation[R]. Washington D C: National Research Council, 1994.
    [17]
    谭忆秋,李晓琳,吴建涛,等. 温度及荷载频率对沥青-集料交互作用能力的影响[J]. 中国公路学报,2012,25(3): 65-72. doi: 10.3969/j.issn.1001-7372.2012.03.005

    TAN Yiqiu, LI Xiaolin, WU Jiantao, et al. Influence of temperature and loading frequency on the interaction ability of asphalt and aggregate[J]. China Journal of Highway and Transport, 2012, 25(3): 65-72. doi: 10.3969/j.issn.1001-7372.2012.03.005
    [18]
    牛岩,张晨晨,王旭东,等. 沥青混合料玻璃态转变温度的外部影响因素[J]. 哈尔滨工业大学学报,2019,51(9): 137-143. doi: 10.11918/j.issn.0367-6234.201708124

    NIU Yan, ZHANG Chenchen, WANG Xudong, et al. External influence factors on the glass transition temperature of asphalt mixture[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 137-143. doi: 10.11918/j.issn.0367-6234.201708124
    [19]
    谭忆秋. 沥青与沥青混合料[M]. 哈尔滨:哈尔滨工业大学出版社,2007.
    [20]
    YANG G, WANG X, ZHOU X, et al. Experimental study on the phase transition characteristics of asphalt mixture for stress absorbing membrane interlayer[J]. Materials, 2020, 13(2): 474.1-474.13.
    [21]
    王筵铸. 沥青黏聚-黏附性和相态转变特性及其对混合料性能影响的研究[D]. 哈尔滨:哈尔滨工业大学,2022.
    [22]
    王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技,2017,34(6): 30-37.

    WANG Xudong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37.
    [23]
    梁明,王川,栾学昊,等. 聚合物改性沥青微细观相态结构的流变学响应特征[J]. 中国石油大学学报(自然科学版),2023,47(1): 183-188. doi: 10.3969/j.issn.1673-5005.2023.01.021

    LIANG Ming, WANG Chuan, LUAN Xuehao, et al. Rheological response characteristics of polymer modified asphalt microstructure[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 183-188. doi: 10.3969/j.issn.1673-5005.2023.01.021
    [24]
    杨挺青,徐平,罗文波,等. 黏弹性理论与应用[M]. 北京:科学出版社,2004.
    [25]
    王旭东,张蕾. 宽刚度域基层长寿命沥青路面设计导论[M]. 北京:人民交通出版社,2024.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views(68) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return