• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
LI Cuiran, SUN Shujing, ZHANG Zepeng, WANG Huiqin, XIE Jianli. Intelligent Reflecting Surface-Assisted and Artificial Noise Enhancement-Based Beamforming Method in Covert High-Speed Rail Communications[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240424
Citation: LI Cuiran, SUN Shujing, ZHANG Zepeng, WANG Huiqin, XIE Jianli. Intelligent Reflecting Surface-Assisted and Artificial Noise Enhancement-Based Beamforming Method in Covert High-Speed Rail Communications[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240424

Intelligent Reflecting Surface-Assisted and Artificial Noise Enhancement-Based Beamforming Method in Covert High-Speed Rail Communications

doi: 10.3969/j.issn.0258-2724.20240424
  • Received Date: 19 Aug 2014
  • Rev Recd Date: 29 Nov 2024
  • Available Online: 04 Dec 2025
  • To address the prevalent issues of low effective throughput and limited covertness in high-speed rail (HSR) wireless communication systems, an optimization problem was formulated to maximize the system’s effective throughput, subject to constraints on the covert requirement, transmit power of the maximum artificial noise (AN), and the unit modulus of the intelligent reflecting surface (IRS) phase shifts, and a beamforming method for covert HSR wireless communications based on IRS assistance and AN enhancement was designed. An alternating optimization strategy was adopted, decomposing the coupled optimization variables into three subproblems, including base station beamforming, IRS phase shift optimization, and AN transmit power optimization. The covert requirement constraint was mapped onto a complex circle manifold using the quadratic transform method from fractional programming. The conjugate gradient (CG) algorithm was employed to optimize the IRS phase shifts. The Dinkelbach algorithm was used to design the AN transmit power, and these steps were iterated alternately. Simulation results demonstrate that the proposed algorithm achieves a lower computational complexity. Under high-speed scenarios, it enhances the system’s effective throughput by 27.31% and improves the covert transmission performance, which is important for enhancing the security of information transmission in HSR wireless communication systems.

     

  • loading
  • [1]
    AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6): 856-893. doi: 10.1109/JPROC.2020.2988595
    [2]
    李赛飞, 闫连山, 李洪赭, 等. 铁路通信网络安全的分析测试与可信防御研究[J]. 西南交通大学学报, 2018, 53(6): 1130-1136, 1149.

    LI Saifei, YAN Lianshan, LI Hongzhe, et al. Analysis and testing of network security for China railway communication networks and proposed architecture based on trusted computing[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1130-1136, 1149.
    [3]
    鞠宏浩, 程楷钧, 邓彩连, 等. 无人机空地网络研究综述[J]. 西南交通大学学报, 2024, 59(4): 877-889.

    JU Honghao, CHENG Kaijun, DENG Cailian, et al. A survey on air-ground networks of unmanned aerial vehicles[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 877-889.
    [4]
    CHEN X Y, AN J P, XIONG Z H, et al. Covert communications: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1173-1198.
    [5]
    ARZYKULOV S, CELIK A, NAURYZBAYEV G, et al. Artificial noise and RIS-aided physical layer security: optimal RIS partitioning and power control[J]. IEEE Wireless Communications Letters, 2023, 12(6): 992-996. doi: 10.1109/LWC.2023.3256001
    [6]
    周小波, 于辉, 彭旭, 等. 智能反射面辅助及人工噪声增强的无线隐蔽通信[J]. 电子与信息学报, 2022, 44(7): 2392-2399.

    ZHOU Xiaobo, YU Hui, PENG Xu, et al. Wireless covert communications based on intelligent reflecting surface aided and artificial noise enhanced[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2392-2399.
    [7]
    崔亚平, 应兆朋, 何鹏, 等. 空中智能反射面增强的URLLC多无人机网络[J]. 西南交通大学学报, 2024, 59(4): 907-916.

    CUI Yaping, YING Zhaopeng, HE Peng, et al. Ultra-reliable low-latency communication multi-unmanned aerial vehicle network assisted by intelligent reflecting surface in air[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 907-916.
    [8]
    YANG Z Y, YUE P Y, WANG S, et al. Energy-efficient optimization for RIS-aided MIMO covert communications[J]. IEEE Internet of Things Journal, 2023, 10(21): 18993-19003. doi: 10.1109/JIOT.2023.3265126
    [9]
    ZHOU X B, YAN S H, WU Q Q, et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2021, 21(1): 532-547.
    [10]
    YU X H, XU D F, SUN Y, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637-2652. doi: 10.1109/JSAC.2020.3007043
    [11]
    席兵, 冯彦博, 邓炳光, 等. 智能反射面辅助的抗干扰安全通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(3): 875-885.

    XI Bing, FENG Yanbo, DENG Bingguang, et al. A robust resource allocation algorithm for intelligent reflecting surface-assisted anti-jamming secure communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(3): 875-885.
    [12]
    LIU C Z, HE R S, NIU Y, et al. Refracting reconfigurable intelligent surface assisted URLLC for millimeter wave high-speed train communication coverage enhancement[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 953-967. doi: 10.1109/TVT.2024.3457032
    [13]
    LIU C Z, HE R S, NIU Y, et al. Reconfigurable intelligent surface assisted high-speed train communications: coverage performance analysis and placement optimization[J]. IEEE Transactions on Vehicular Technology, 2023, 73(3): 3750-3766.
    [14]
    LIU C Z, HE R S, NIU Y, et al. Coverage probability analysis of RIS-assisted high-speed train communications[C]//2023 IEEE Wireless Communications and Networking Conference (WCNC). Glasgow: IEEE, 2023: 1-6.
    [15]
    MA Z, WU Y L, XIAO M, et al. Interference suppression for railway wireless communication systems: a reconfigurable intelligent surface approach[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11593-11603. doi: 10.1109/TVT.2021.3111646
    [16]
    CHEN Y B, WANG Y, ZHANG J Y, et al. QoS-driven spectrum sharing for reconfigurable intelligent surfaces (RISs) aided vehicular networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5969-5985. doi: 10.1109/TWC.2021.3071332
    [17]
    CAI Y L, ZHAO M M, XU K D, et al. Intelligent reflecting surface aided full-duplex communication: passive beamforming and deployment design[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 383-397. doi: 10.1109/TWC.2021.3095939
    [18]
    TANG Z X, WANG Y, CHEN Y B, et al. Learn to beamform in reconfigurable intelligent surface aided MISO communications with channel aging[C]//2022 IEEE Wireless Communications and Networking Conference (WCNC). Austin: IEEE, 2022: 1200-1205.
    [19]
    XU J P, AI B. When mmWave high-speed railway networks meet reconfigurable intelligent surface: a deep reinforcement learning method[J]. IEEE Wireless Communications Letters, 2022, 11(3): 533-537. doi: 10.1109/LWC.2021.3135602
    [20]
    李翠然, 张泽鹏, 谢健骊. 基于LSTM动态波束赋形的高速列车越区切换算法[J]. 铁道学报, 2023, 45(10): 78-86.

    LI Cuiran, ZHANG Zepeng, XIE Jianli. Handover algorithm based on LSTM dynamic beamforming for high-speed train[J]. Journal of the China Railway Society, 2023, 45(10): 78-86.
    [21]
    GUO W, ZHANG W L, MU P C, et al. High-mobility wideband massive MIMO communications: Doppler compensation, analysis and scaling laws[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3177-3191. doi: 10.1109/TWC.2019.2911508
    [22]
    SHEN K M, YU W. Fractional programming for communication systems: part I: power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616-2630. doi: 10.1109/TSP.2018.2812733
    [23]
    NEUMAIER A, KIMIAEI M, AZMI B. Globally linearly convergent nonlinear conjugate gradients without Wolfe line search[J]. Numerical Algorithms, 2024, 97(4): 1607-1633. doi: 10.1007/s11075-024-01764-5
    [24]
    LI S C, ZHANG N, CHEN H B, et al. Joint road side units selection and resource allocation in vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 13190-13204. doi: 10.1109/TVT.2021.3119327
    [25]
    YUAN Y, HE R S, AI B, et al. A 3D geometry-based reconfigurable intelligent surfaces-assisted mmWave channel model for high-speed train communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 1524-1539. doi: 10.1109/TVT.2023.3321645
    [26]
    CHEN J C. Manifold optimization approach for data detection in massive multiuser MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3652-3657. doi: 10.1109/TVT.2017.2779157
    [27]
    GAO Y B, WANG Y Z, LI C R, et al. Research on joint beamforming of high-speed railway millimeter-wave MIMO communication with reconfigurable intelligent surface[J]. Alexandria Engineering Journal, 2023, 74: 317-326. doi: 10.1016/j.aej.2023.05.021
    [28]
    LI C R, LU Y J, XIE J L, et al. An energy-efficient optimization method for high-speed rail communication systems assisted by intelligent reflecting surfaces (IRS)[J]. Applied Sciences, 2023, 13(16): 9401-9421. doi: 10.3390/app13169401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(48) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return