• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
SU Ang, FENG Kun, HE Chuan, LIANG Kun, GUO Wenqi. Mechanical Characteristics of Large-Diameter Shield Tunnel Segment Structure under High Water Pressure[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240419
Citation: SU Ang, FENG Kun, HE Chuan, LIANG Kun, GUO Wenqi. Mechanical Characteristics of Large-Diameter Shield Tunnel Segment Structure under High Water Pressure[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240419

Mechanical Characteristics of Large-Diameter Shield Tunnel Segment Structure under High Water Pressure

doi: 10.3969/j.issn.0258-2724.20240419
  • Received Date: 02 Sep 2024
  • Rev Recd Date: 12 Nov 2024
  • Available Online: 12 Jan 2026
  • To investigate the mechanical characteristics of large-diameter shield tunnel segment structures under ultimate loads, a multifunctional shield tunnel structure loading device was used to conduct a prototype loading failure test on the shield tunnel segment structure of the Sutong gas-insulated metal-enclosed transmission line (GIL) utility tunnel project. The mechanical response laws of deformation, internal force, joint deformation, bolt and steel bar strain of the segment structure under ultimate load were analyzed. Based on the crack morphology, the failure characteristics and mechanisms of the segment structure were revealed. The results show that the deformation of the segment structure presents a horizontal duck egg shape, the bending moment presents a butterfly shape, and the axial force presents a circular shape. The maximum single point change rate is 10.3‰, the maximum positive bending moment is 3896 kN•m, and the maximum axial force is 17099.28 kN. The maximum bolt strain is 1871 με, far less than the yield strain, and the maximum steel bar strain is 2213 με, exceeding its yield strain. The safety margin for the deformation indicator of the segment structure is between 0.92 and 1.72, while for the strength indicator, it is between 0.10 and 0.16. The strength indicator reaches the ultimate failure value before the deformation indicator. Reinforcement yielding or the main crack penetration is recommended as the judgment criterion of the ultimate limit state for the normal serviceability of the segment structure. Cracks of the segment structure first appear in the middle of the segment B3. When the load is 1778.4 kN, multiple cracks penetrate through the inner and outer arc surfaces of the arch crown and arch bottom, with the maximum widths of the cracks on the inner and outer arc surfaces reaching 4.5 mm and 11.5 mm, respectively. The steel bar of the segment B3 reaches the yield condition, and the segment structure is damaged due to local instability.

     

  • loading
  • [1]
    何川, 封坤. 大型水下盾构隧道结构研究现状与展望[J]. 西南交通大学学报, 2011, 46(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001

    HE Chuan, FENG Kun. Review and prospect of structure research of underwater shield tunnel with large cross-section[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 1-11. doi: 10.3969/j.issn.0258-2724.2011.01.001
    [2]
    封坤, 何川, 肖明清. 高速铁路水下盾构隧道管片衬砌主体结构受力分析研究[J]. 现代隧道技术, 2008, 45(增1): 129-133.

    FENG Kun, HE Chuan, XIAO Mingqing. Study on stress analysis of the main structure of segment lining in underwater shield tunnels for high-speed rail[J]. Modern Tunnelling Technology, 2008, 45(S1): 129-133.
    [3]
    方勇, 何川, 齐春, 等. 砂卵石地层下伏膨胀岩土盾构隧道结构内力特征[J]. 西南交通大学学报, 2014, 49(3): 386-392. doi: 10.3969/j.issn.0258-2724.2014.03.003

    FANG Yong, HE Chuan, QI Chun, et al. Structural internal force of shield tunnel in expansive soil underlying sandy pebble layer[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 386-392. doi: 10.3969/j.issn.0258-2724.2014.03.003
    [4]
    郭瑞, 何川. 盾构隧道管片衬砌结构稳定性研究[J]. 中国公路学报, 2015, 28(6): 74-81. doi: 10.19721/j.cnki.1001-7372.2015.06.011

    GUO Rui, HE Chuan. Study on stability of segment lining structure for shield tunnel[J]. China Journal of Highway and Transport, 2015, 28(6): 74-81. doi: 10.19721/j.cnki.1001-7372.2015.06.011
    [5]
    张伟列, 晏启祥, 张川, 等. 盾构千斤顶不良顶推作用下地铁管片衬砌开裂特性[J]. 西南交通大学学报, 2023, 58(5): 1073-1082. doi: 10.3969/j.issn.0258-2724.20220235

    ZHANG Weilie, YAN Qixiang, ZHANG Chuan, et al. Cracking behavior of segmental lining in subways under adverse jacking force during shield tunneling[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1073-1082. doi: 10.3969/j.issn.0258-2724.20220235
    [6]
    鲁志鹏, 付佳卉, 张心源, 等. 大直径盾构隧道单环结构安全性评价分析[J]. 铁道标准设计, 2024, 68(11): 117-125.

    LU Zhipeng, FU Jiahui, ZHANG Xinyuan, et al. Analysis on safety evaluation of single-ring structures in large-diameter shield tunnels[J]. Railway Standard Design, 2024, 68(11): 117-125.
    [7]
    刘洋, 龚振华, 梁敏飞, 等. 考虑变荷载影响的水下盾构隧道双层衬砌力学特性分析[J]. 铁道标准设计, 2022, 66(7): 101-107. doi: 10.13238/j.issn.1004-2954.202103060001

    LIU Yang, GONG Zhenhua, LIANG Minfei, et al. Analysis of mechanical characteristics of shield tunnel with double-layer lining considering variable loads[J]. Railway Standard Design, 2022, 66(7): 101-107. doi: 10.13238/j.issn.1004-2954.202103060001
    [8]
    赵金虎. 纵向力对盾构隧道管片结构力学性能的影响分析[J]. 铁道建筑技术, 2023(8): 155-159. doi: 10.3969/j.issn.1009-4539.2023.08.038

    ZHAO Jinhu. Analysis of the effect of longitudinal force on the mechanical properties of segment structures of shield tunnel[J]. Railway Construction Technology, 2023(8): 155-159. doi: 10.3969/j.issn.1009-4539.2023.08.038
    [9]
    王士民, 申兴柱, 彭博, 等. 侧压力系数对盾构隧道管片衬砌受力及破坏形态的影响研究[J]. 铁道学报, 2019, 41(7): 102-109.

    WANG Shimin, SHEN Xingzhu, PENG Bo, et al. Analysis of effect of lateral strata pressure coefficient on mechanical characteristics and failure modes of segment lining of shield tunnel[J]. Journal of the China Railway Society, 2019, 41(7): 102-109.
    [10]
    鲁选一, 封坤, 漆美霖, 等. 纵向力作用下的盾构隧道管片结构纵向弯曲变形性能研究[J]. 工程力学, 2023, 40(7): 205-216. doi: 10.6052/j.issn.1000-4750.2021.12.0945

    LU Xuanyi, FENG Kun, QI Meilin, et al. Study on longitudinal bending deformation behavior of shield tunnel segments regarding the action of longitudinal force[J]. Engineering Mechanics, 2023, 40(7): 205-216. doi: 10.6052/j.issn.1000-4750.2021.12.0945
    [11]
    刘川昆, 何川, 王士民, 等. 裂缝长度对盾构隧道管片结构破坏模式模型试验研究[J]. 中南大学学报(自然科学版), 2019, 50(6): 1447-1456. doi: 10.11817/j.issn.1672-7207.2019.06.024

    LIU Chuankun, HE Chuan, WANG Shimin, et al. Model test study on failure mode of segment structure of shield tunnel with crack length[J]. Journal of Central South University (Science and Technology), 2019, 50(6): 1447-1456. doi: 10.11817/j.issn.1672-7207.2019.06.024
    [12]
    ZHOU J M, HE C, FENG K, et al. Model test on structural behaviour of underwater shield tunnel with large cross-section considering assembling modes[J]. Advanced Materials Research, 2011, 243/244/245/246/247/248/249: 3560-3564.
    [13]
    CARATELLI A, MEDA A, RINALDI Z, et al. Structural behaviour of precast tunnel segments in fiber reinforced concrete[J]. Tunnelling and Underground Space Technology, 2011, 26(2): 284-291. doi: 10.1016/j.tust.2010.10.003
    [14]
    张子新, 朱叶艇, 朱雁飞, 等. 粘土地层大断面异形盾构隧道结构力学特征数值试验研究[J]. 现代隧道技术, 2018, 55(4): 106-113. doi: 10.13807/j.cnki.mtt.2018.04.015

    ZHANG Zixin, ZHU Yeting, ZHU Yanfei, et al. Mechanical characteristics of the segment lining for a large specially shaped cross-section shield tunnel in clay strata[J]. Modern Tunnelling Technology, 2018, 55(4): 106-113. doi: 10.13807/j.cnki.mtt.2018.04.015
    [15]
    杨成永, 马文辉, 费腾, 等. 考虑轴力和剪切效应的盾构隧道纵向变形分析[J]. 西南交通大学学报, 2022, 57(1): 139-147. doi: 10.3969/j.issn.0258-2724.20200134

    YANG Chengyong, MA Wenhui, FEI Teng, et al. Analysis of longitudinal deformation of shield tunnel structures with consideration of axial force and shear effect[J]. Journal of Southwest Jiaotong University, 2022, 57(1): 139-147. doi: 10.3969/j.issn.0258-2724.20200134
    [16]
    何川, 封坤, 苏宗贤. 大断面水下盾构隧道原型结构加载试验系统的研发与应用[J]. 岩石力学与工程学报, 2011, 30(2): 254-266.

    HE Chuan, FENG Kun, SU Zongxian. Development and application of loading test system of prototype structure for underwater shield tunnel with large cross-section[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 254-266.
    [17]
    封坤, 何川, 苏宗贤. 南京长江隧道原型管片结构破坏试验研究[J]. 西南交通大学学报, 2011, 46(4): 564-571. doi: 10.3969/j.issn.0258-2724.2011.04.007

    FENG Kun, HE Chuan, SU Zongxian. Prototype test on failure characteristics of segmental lining structure for Nanjing Yangtze River tunnel[J]. Journal of Southwest Jiaotong University, 2011, 46(4): 564-571. doi: 10.3969/j.issn.0258-2724.2011.04.007
    [18]
    邱月, 封坤, 何川, 等. 盾构隧道错缝拼装管片衬砌局部原型结构破坏试验[J]. 土木工程学报, 2019, 52(4): 98-108. doi: 10.15951/j.tmgcxb.2019.04.009

    QIU Yue, FENG Kun, HE Chuan, et al. Local prototype failure test on staggered assembled segmental lining for shield tunnel[J]. China Civil Engineering Journal, 2019, 52(4): 98-108. doi: 10.15951/j.tmgcxb.2019.04.009
    [19]
    柳献, 黄晓冬. 通缝拼装盾构隧道衬砌结构抗倒塌性能的试验研究[J]. 岩石力学与工程学报, 2015, 34(增2): 3703-3714. doi: 10.13722/j.cnki.jrme.2015.0989

    LIU Xian, HUANG Xiaodong. Experimental study of collapse capacity of straight joint segmental tunnel lining structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3703-3714. doi: 10.13722/j.cnki.jrme.2015.0989
    [20]
    毕湘利, 柳献, 王秀志, 等. 通缝拼装盾构隧道结构极限承载力的足尺试验研究[J]. 土木工程学报, 2014, 47(10): 117-127. doi: 10.15951/j.tmgcxb.2014.10.028

    BI Xiangli, LIU Xian, WANG Xiuzhi, et al. Experimental investigation on the ultimate bearing capacity of continuous-jointed segmental tunnel linings[J]. China Civil Engineering Journal, 2014, 47(10): 117-127. doi: 10.15951/j.tmgcxb.2014.10.028
    [21]
    朱瑶宏, 朱雁飞, 叶宇航, 等. 类矩形盾构隧道衬砌结构受力性能的足尺试验研究[J]. 现代隧道技术, 2016, 53(增1): 108-117. doi: 10.13807/j.cnki.mtt.2016.S1.016

    ZHU Yaohong, ZHU Yanfei, YE Yuhang, et al. Full-scale experiment study on mechanical behavior of quasi-rectangular shield tunnel lining[J]. Modern Tunnelling Technology, 2016, 53(S1): 108-117. doi: 10.13807/j.cnki.mtt.2016.S1.016
    [22]
    梁坤, 封坤, 肖明清, 等. 水压作用对通缝拼装管片结构力学性能的影响研究[J]. 岩土工程学报, 2019, 41(11): 2037-2045. doi: 10.11779/CJGE201911008

    LIANG Kun, FENG Kun, XIAO Mingqing, et al. Water-pressure action on structural behaviors of straight assembling segmental linings of underwater shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2037-2045. doi: 10.11779/CJGE201911008
    [23]
    封坤, 何川, 苏宗贤. 南京长江隧道管片衬砌结构原型加载试验[J]. 中国公路学报, 2013, 26(1): 135-143. doi: 10.19721/j.cnki.1001-7372.2013.01.019

    FENG Kun, HE Chuan, SU Zongxian. Prototype loading test on segmental lining structure of Nanjing Yangtze River tunnel[J]. China Journal of Highway and Transport, 2013, 26(1): 135-143. doi: 10.19721/j.cnki.1001-7372.2013.01.019
    [24]
    夏松林. 狮子洋隧道通缝式拼装管片衬砌结构的原型试验研究[D]. 成都: 西南交通大学, 2010.
    [25]
    曹淞宇, 封坤, 刘迅, 等. 纵向力对带榫管片环缝剪切破坏机制影响研究[J]. 中国公路学报, 2021, 34(9): 273-284. doi: 10.3969/j.issn.1001-7372.2021.09.023

    CAO Songyu, FENG Kun, LIU Xun, et al. Experimental investigation of the shear mechanism on mortise and tenon segment lining[J]. China Journal of Highway and Transport, 2021, 34(9): 273-284. doi: 10.3969/j.issn.1001-7372.2021.09.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(4)

    Article views(39) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return