• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
LI Qi, LAI Yuchen, ZHANG Di, SHI Long, LI Kebing. Track–Bridge Longitudinal Dynamic Interaction during High-Speed Train Braking Process[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240409
Citation: LI Qi, LAI Yuchen, ZHANG Di, SHI Long, LI Kebing. Track–Bridge Longitudinal Dynamic Interaction during High-Speed Train Braking Process[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240409

Track–Bridge Longitudinal Dynamic Interaction during High-Speed Train Braking Process

doi: 10.3969/j.issn.0258-2724.20240409
  • Received Date: 20 Aug 2024
  • Rev Recd Date: 23 Jan 2025
  • Available Online: 12 Nov 2025
  • To investigate the influence of the dynamic braking process of high-speed trains on the longitudinal force at the pier tops of simply supported beam bridges, the rail-level braking force time-history curve was first calculated and obtained via multibody system dynamics simulation. Longitudinal resistance tests were then conducted on WJ-8 type low-resistance fasteners to reveal the law governing the influence of loading frequency and vertical load on the longitudinal resistance properties of the fasteners. Finally, a finite element model for longitudinal track–bridge interaction in multi-span simply-supported girder bridges was established. In this model, the wheel’s vertical and longitudinal forces were applied as moving concentrated loads on the rail, taking into account the uneven distribution of dynamic vertical force among the fasteners and their corresponding vertical-load-dependent longitudinal resistances. The influence of braking stop position and number of spans on the dynamic response of the track–bridge system was analyzed using the dynamic time-history method, and the results were compared with those from static analysis. The findings indicate that the longitudinal resistance of the fasteners is not significantly influenced by the loading frequency but is sensitive to the vertical load they carry. The longitudinal forces in the rail and at the pier tops are maximized when the train stops braking at the abutment of the final span. While these forces increase with the number of spans, they stabilize beyond eight spans. A discrepancy is observed between the dynamic and static analysis results for the maximum rail stress and displacement, yielding a dynamic amplification factor of approximately 1.05. Furthermore, the dynamic amplification factor is about 1.07 for the pier experiencing the greatest braking force, but can reach up to 1.93 for piers subjected to smaller forces.

     

  • loading
  • [1]
    李东昇, 陈浩瑞, 胡所亭, 等. 铁路列车作用下桥上轨面纵向力率取值研究[J]. 中国铁道科学, 2023, 44(2): 56-65.

    LI Dongsheng, CHEN Haorui, HU Suoting, et al. Research on the value of longitudinal force rate acting on rail surface of bridge under the action of railway trains[J]. China Railway Science, 2023, 44(2): 56-65.
    [2]
    孟鑫, 董振升, 王巍, 等. 铁路斜拉桥上动车组制动试验分析[J]. 铁道工程学报, 2023, 40(5): 52-57.

    MENG Xin, DONG Zhensheng, WANG Wei, et al. Braking test analysis of multiple unit train on railway cable-stayed bridge[J]. Journal of Railway Engineering Society, 2023, 40(5): 52-57.
    [3]
    Bridge Research Institute of Railway Bridge Authority . Special Procedures on Shinkansen Railway Bridge: DS 899/59[S]. Danmark: [s. n. ], 1985.
    [4]
    UIC. Track/bridge Interaction Recommendations for Calculations: Code 774-3[S]. Paris: International Union of Railways, 2001.
    [5]
    European Committee for Standardization. Eurocode 1: Actions on Structures—Part 2: Traffic loads on bridges: EN 1991-2 [S]. Brussels: [s. n. ], 2003.
    [6]
    XIE K Z, ZHAO W G, CAI X P, et al. Interaction between track and long-span cable-stayed bridge: recommendations for calculation[J]. Mathematical Problems in Engineering, 2020, 2020(1): 5463415.
    [7]
    戴公连, 朱俊樸, 闫斌. 大轴重重载铁路简支梁桥梁轨相互作用研究[J]. 桥梁建设, 2014, 44(5): 27-32.

    DAI Gonglian, ZHU Junpu, YAN Bin. Study of beam and track interaction for simply-supported beam bridge of heavy axle load heavy haul railway[J]. Bridge Construction, 2014, 44(5): 27-32.
    [8]
    戴公连, 朱俊樸, 闫斌. 30t轴重重载铁路简支梁桥上无缝线路纵向力研究[J]. 土木工程学报, 2015, 48(8): 60-69.

    DAI Gonglian, ZHU Junpu, YAN Bin. Longitudinal force of continuous welded rail on simply-supported bridge under 30t axle load heavy haul[J]. China Civil Engineering Journal, 2015, 48(8): 60-69.
    [9]
    张捍东. 大跨度混合梁斜拉桥上无砟轨道纵向力分析[J]. 铁道建筑, 2020, 60(3): 104-107, 117.

    ZHANG Handong. Analysis on longitudinal force of ballastless track system on long span hybrid girder cable-stayed bridge[J]. Railway Engineering, 2020, 60(3): 104-107, 117.
    [10]
    张迅, 苏斌, 李小珍, 等. 高墩大跨简支梁桥的特殊梁轨纵向力及其影响[J]. 西南交通大学学报, 2016, 51(1): 57-64.

    ZHANG Xun, SU Bin, LI Xiaozhen, et al. Special longitudinal forces between continuous welded rail and long-span simply supported beam bridge with high piers and their influences[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 57-64.
    [11]
    蔡小培, 王昌昌, 董博, 等. 路桥过渡段纵连轨道板纵向力分布特征与上拱机理分析[J]. 西南交通大学学报, 2025, 60(3): 580-588.

    CAI Xiaopei, WANG Changchang, DONG Bo, et al. Analysis of longitudinal force distribution characteristics and arching mechanism of longitudinally connected track slabs in bridge-subgrade transition section[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 580-588.
    [12]
    石龙, 吴定俊, 李奇. 考虑加载历程和梁轨相互作用的桥上轨道受力分析[J]. 铁道学报, 2016, 38(2): 105-111.

    SHI Long, WU Dingjun, LI Qi. Analysis on stress of track on bridge considering loading history and track-bridge interaction[J]. Journal of the China Railway Society, 2016, 38(2): 105-111.
    [13]
    HE X H, YU K H, CAI C Z, et al. Dynamic responses of a metro train-bridge system under train-braking: field measurements and data analysis[J]. Sensors, 2020, 20(3): 735. doi: 10.3390/s20030735
    [14]
    颜轶航, 吴定俊, 李奇. 列车制动下铁路斜拉桥梁轨动力相互作用研究[J]. 中国铁道科学, 2019, 40(1): 31-38.

    YAN Yihang, WU Dingjun, LI Qi. Dynamic interaction between beam and track of railway cable-stayed bridge under train braking[J]. China Railway Science, 2019, 40(1): 31-38.
    [15]
    于向东, 张贺, 敬海泉. 列车制动参数对大跨度悬索桥梁轨相互作用影响研究[J]. 铁道科学与工程学报, 2023, 20(11): 4243-4255.

    YU Xiangdong, ZHANG He, JING Haiquan. Influence of train braking parameters on beam rail interaction of long-span suspension bridge[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4243-4255.
    [16]
    DIN-Deutsches. Einwirkungen auf Brücken: DIN Fachbericht 101[S]. Berlin: Beuth Verlag, 2003.
    [17]
    中华人民共和国铁道部. 铁路无缝线路设计规范: TB 10015—2012[S]. 北京: 中国铁道出版社, 2013.
    [18]
    蒋金洲, 卢耀荣. 我国客运专线桥上无缝线路采用小阻力扣件的建议[J]. 铁道建筑, 2007, 47(11): 90-93.

    JIANG Jinzhou, LU Yaorong. Suggestions on using small resistance fasteners for jointless tracks on bridges of passenger dedicated lines in China[J]. Railway Engineering, 2007, 47(11): 90-93.
    [19]
    高原, 杨东升, 王树国. 铺设锁定轨温差对高原铁路无缝道岔受力特性的影响[J]. 西南交通大学学报, 2025, 60(3): 648-655.

    GAO Yuan, YANG Dongsheng, WANG Shuguo. Influence of stress-free temperature difference on force characteristics of seamless turnouts in plateau areas[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 648-655.
    [20]
    闫斌. 高速铁路中小跨度桥梁与轨道相互作用研究[D]. 长沙: 中南大学, 2013.
    [21]
    于向东, 黄铮, 敬海泉. 考虑加载历史多因素耦合作用下的梁轨相互作用附加力[J]. 铁道科学与工程学报, 2023, 20(1): 210-221.

    YU Xiangdong, HUANG Zheng, JING Haiquan. Additional force of track-bridge interaction under multi-factor coupling of loading history[J]. Journal of Railway Science and Engineering, 2023, 20(1): 210-221.
    [22]
    于向东, 宋浩, 敬海泉. 考虑加载历史的小半径曲线桥梁梁轨相互作用分析[J]. 铁道科学与工程学报, 2024, 21(3): 1079-1089.

    YU Xiangdong, SONG Hao, JING Haiquan. Analysis of track-bridge interaction for small radius curved bridges considering loading history[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1079-1089.
    [23]
    吴定俊, 石龙, 李奇. 梁轨纵向位移阻力系数双弹簧模型研究[J]. 工程力学, 2015, 32(10): 75-81.

    WU Dingjun, SHI Long, LI Qi. A double-spring model for longitudinal displacement-resistance relationship of fasteners in rail-bridge interaction analysis[J]. Engineering Mechanics, 2015, 32(10): 75-81.
    [24]
    崔晓璐, 唐传平, 包鹏羽, 等. 高速列车制动区段钢轨波磨抑制方法[J]. 西南交通大学学报, 2023, 58(3): 656-664.

    CUI Xiaolu, TANG Chuanping, BAO Pengyu, et al. Rail corrugation suppressing method on braking sections of high-speed trains[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 656-664.
    [25]
    常崇义, 王成国, 马大炜, 等. 2万t组合列车纵向力计算研究[J]. 铁道学报, 2006, 28(2): 89-94.

    CHANG Chongyi, WANG Chengguo, MA Dawei, et al. Study on numerical auclysis of longitudinal forces of the T20, 000 heavy haul[J]. Journal of the China Railway Society, 2006, 28(2): 89-94.
    [26]
    谢红太, 王红. 风阻制动装置纵向布局密度对高速列车制动效果的影响研究[J/OL]. 西南交通大学学报, 2024: 1-11. (2024-09-27). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240927002&dbname=CJFD&dbcode=CJFQ.
    [27]
    国家铁路局. 国家铁路局关于印发《“十四五”铁路科技创新规划》的通知[EB/OL]. (2021-12-14). https://www.gov.cn/zhengce/zhengceku/2021-2/24/content5664357.htm.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views(65) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return