• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
HU Changfu, ZHU Shunshun, LV Jiabiao. Complex Nonlinear Behavior of Parabolic Two-Hinged Arches Subjected to a Midspan Concentrated Force[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240363
Citation: HU Changfu, ZHU Shunshun, LV Jiabiao. Complex Nonlinear Behavior of Parabolic Two-Hinged Arches Subjected to a Midspan Concentrated Force[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240363

Complex Nonlinear Behavior of Parabolic Two-Hinged Arches Subjected to a Midspan Concentrated Force

doi: 10.3969/j.issn.0258-2724.20240363
  • Received Date: 23 Jul 2024
  • Rev Recd Date: 02 Jul 2025
  • Available Online: 19 Nov 2025
  • To investigate the complex nonlinear behavior of parabolic two-hinged arches subjected to a midspan concentrated force, a theoretical method was proposed to reveal its rule. Based on the nonlinear strain–displacement relationship of arches in the Cartesian right-angled coordinate system, nonlinear equilibrium differential equations of parabolic two-hinged arches subjected to a midspan concentrated force were derived, as well as the corresponding high-precision approximate analytical solutions of these nonlinear equations. The common rules of complex nonlinear behavior of parabolic two-hinged arches subjected to a midspan concentrated force were investigated by the limitation analysis of these high-precision approximate analytical solutions in discontinuous points: 1) If and only if the modified slenderness ratio is greater than or equal to the limit-pattern critical slenderness ratio, limit-pattern nonlinear behavior occurs in parabolic two-hinged arches subjected to a midspan concentrated force. Moreover, multiple extreme points appear on the limit-pattern nonlinear equilibrium path, and the number of extreme points is positively correlated with the parameter k. 2) When limit-pattern nonlinear behavior occurs in parabolic two-hinged arches subjected to a midspan concentrated force, the limit-pattern nonlinear equilibrium path passes through specific points. The coordinates of these points are fixed and do not change with variations in the modified slenderness ratio. 3) If and only if the modified slenderness ratio is greater than or equal to the bifurcation-pattern critical slenderness ratio, bifurcation-pattern nonlinear behavior occurs in parabolic two-hinged arches subjected to a midspan concentrated force. This bifurcation-pattern nonlinear behavior exhibits multiple equilibrium paths. Comparisons against nonlinear finite element results demonstrate that the proposed approximate analytical solutions of nonlinear equilibrium of parabolic two-hinged arches subjected to a vertical midspan concentrated force have sufficient accuracy, and the rules of complex nonlinear behavior of parabolic two-hinged arches subjected to a midspan concentrated force agree well with nonlinear finite element results. The maximum relative error is 9.05%, which meets the needs of engineering accuracy.

     

  • loading
  • [1]
    陈宝春, 张梦娇, 刘君平, 等. 我国混凝土拱桥应用现状与展望[J]. 福州大学学报(自然科学版), 2021, 49(5): 716-726.

    CHEN Baochun, ZHANG Mengjiao, LIU Junping, et al. Application and prospects of concrete arch bridges in China[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(5): 716-726.
    [2]
    ZHENG J L, WANG J J. Concrete-filled steel tube arch bridges in China[J]. Engineering, 2018, 4(1): 143-155. doi: 10.1016/j.eng.2017.12.003
    [3]
    张承文, 淳庆, 花全均, 等. 基于元遗传算法的石拱桥传感器优化布置及评价方法研究[J/OL]. 西南交通大学学报, 2024: 1-11. (2024-10-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240913002&dbname=CJFD&dbcode=CJFQ.
    [4]
    彭仪普, 汤致远, 陈立, 等. 基于车-桥耦合的系杆拱桥吊杆疲劳损伤分析[J]. 西南交通大学学报, 2025, 60(6): 1447-1454.

    PENG Yipu, TANG Zhiyuan, CHEN Li, et al. Fatigue damage of tied-arch bridge hangers based ontrain-bridge coupling[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1447-1454.
    [5]
    曾永平, 刘力维, 陶奇, 等. CFRP吊索中承式铁路拱桥缆索破断冲击效应数值研究[J/OL]. 西南交通大学学报, 2025: 1-10. (2025-04-07). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20250403005&dbname=CJFD&dbcode=CJFQ.
    [6]
    BRADFORD M A, UY B, PI Y L. In-plane elastic stability of Arches under a central concentrated load[J]. Journal of Engineering Mechanics, 2002, 128(7): 710-719. doi: 10.1061/(ASCE)0733-9399(2002)128:7(710)
    [7]
    KISS L P. Nonlinear stability analysis of FGM shallow Arches under an arbitrary concentrated radial force[J]. International Journal of Mechanics and Materials in Design, 2020, 16(1): 91-108. doi: 10.1007/s10999-019-09460-2
    [8]
    PI Y L, BRADFORD M A, GUO Y L. Revisiting nonlinear in-plane elastic buckling and postbuckling analysis of shallow circular Arches under a central concentrated load[J]. Journal of Engineering Mechanics, 2016, 142(8): 04016046. doi: 10.1061/(ASCE)EM.1943-7889.0001098
    [9]
    PI Y L, BRADFORD M A, LIU A R. Nonlinear equilibrium and buckling of fixed shallow Arches subjected to an arbitrary radial concentrated load[J]. International Journal of Structural Stability and Dynamics, 2017, 17(8): 1750082. doi: 10.1142/S0219455417500821
    [10]
    PI Y L. Non-linear in-plane multiple equilibria and buckling of pin-ended shallow circular Arches under an arbitrary radial point load[J]. Applied Mathematical Modelling, 2020, 77: 115-136. doi: 10.1016/j.apm.2019.07.021
    [11]
    张紫祥, 刘爱荣, 黄永辉, 等. 集中荷载作用下弹性扭转约束层合浅拱的非线性面内稳定[J]. 工程力学, 2020, 37(增1): 13-19, 31.

    ZHANG Zixiang, LIU Airong, HUANG Yonghui, et al. Nonlinear in-plane buckling of rotationally restrained shallow laminated Arches under a central concentrated load[J]. Engineering Mechanics, 2020, 37(S1): 13-19, 31.
    [12]
    张紫祥, 刘爱荣, 钟子林. 集中荷载作用下FRP圆弧拱的面内非线性弹性失稳研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 230-234, 258.

    ZHANG Zixiang, LIU Airong, ZHONG Zilin. Nonlinear in-plane elastic buckling of FRP circular arch subjected to a central concentrated load[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2019, 51(2): 230-234, 258.
    [13]
    CAI J G, XU Y X, FENG J, et al. Effects of temperature variations on the in-plane stability of steel arch bridges[J]. Journal of Bridge Engineering, 2012, 17(2): 232-240. doi: 10.1061/(ASCE)BE.1943-5592.0000208
    [14]
    CAI J G, FENG J, CHEN Y, et al. In-plane elastic stability of fixed parabolic shallow Arches[J]. Science in China Series E: Technological Sciences, 2009, 52(3): 596-602. doi: 10.1007/s11431-009-0057-9
    [15]
    BRADFORD M A, PI Y L, YANG G T, et al. Effects of approximations on non-linear in-plane elastic buckling and postbuckling analyses of shallow parabolic Arches[J]. Engineering Structures, 2015, 101: 58-67. doi: 10.1016/j.engstruct.2015.07.008
    [16]
    刘璐璐, 刘爱荣, 卢汉文. T型截面拱在拱顶集中力作用下的平面外弯扭失稳[J]. 工程力学, 2020, 37(增1): 151-156.

    LIU Lulu, LIU Airong, LU Hanwen. Flexural-torsional buckling of pin-ended Arches with t-section under a central radial concentrated load[J]. Engineering Mechanics, 2020, 37(S1): 151-156.
    [17]
    TSIATAS G C, BABOUSKOS N G. Linear and geometrically nonlinear analysis of non-uniform shallow arches under a central concentrated force[J]. International Journal of Non-Linear Mechanics, 2017, 92: 92-101. doi: 10.1016/j.ijnonlinmec.2017.03.019
    [18]
    BATENI M, ESLAMI M R. Non-linear in-plane stability analysis of FGM circular shallow Arches under central concentrated force[J]. International Journal of Non-Linear Mechanics, 2014, 60: 58-69. doi: 10.1016/j.ijnonlinmec.2014.01.001
    [19]
    KISS L P, JALALOVA P, MEHDIYEV Z. Deformations and internal forces in Arches under a concentrated force[J]. Journal of Mechanics of Materials and Structures, 2023, 18(4): 551-565. doi: 10.2140/jomms.2023.18.551
    [20]
    姜正荣, 邱俊明, 石开荣, 等. 考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析[J]. 西南交通大学学报, 2025, 60(3): 561-568.

    JIANG Zhengrong, QIU Junming, SHI Kairong, et al. Nonlinear buckling analysis of suspended domes considering initial curvature of members[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 561-568.
    [21]
    HU C F, PI Y L, GAO W, et al. In-plane non-linear elastic stability of parabolic Arches with different rise-to-span ratios[J]. Thin-Walled Structures, 2018, 129: 74-84. doi: 10.1016/j.tws.2018.03.019
    [22]
    HU C F, LI Z, LIU Z W, et al. In-plane non-linear elastic stability of arches subjected to multi-pattern distributed load[J]. Thin-Walled Structures, 2020, 154: 106810. doi: 10.1016/j.tws.2020.106810
    [23]
    BRADFORD M A, WANG T, PI Y L, et al. In-plane stability of parabolic arches with horizontal spring supports. I: theory[J]. Journal of Structural Engineering, 2007, 133(8): 1130-1137. doi: 10.1061/(ASCE)0733-9445(2007)133:8(1130)
    [24]
    胡常福, 雷亮亮, 陈海龙, 等. 等截面抛物线拱桥内力实用解析解研究[J]. 铁道科学与工程学报, 2011, 8(5): 12-18.

    HU Changfu, LEI Liangliang, CHEN Hailong, et al. Research on practical analytic solution of parabolic arch bridges with uniform section[J]. Journal of Railway Science and Engineering, 2011, 8(5): 12-18.
    [25]
    HU C F, LI Z, HU Q S. On non-linear behavior and buckling of arch-beam structures[J]. Engineering Structures, 2021, 239: 112214. doi: 10.1016/j.engstruct.2021.112214
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article views(65) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return