| Citation: | HU Changfu, ZHU Shunshun, LV Jiabiao. Complex Nonlinear Behavior of Parabolic Two-Hinged Arches Subjected to a Midspan Concentrated Force[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240363 |
To investigate the complex nonlinear behavior of parabolic two-hinged arches subjected to a midspan concentrated force, a theoretical method was proposed to reveal its rule. Based on the nonlinear strain–displacement relationship of arches in the Cartesian right-angled coordinate system, nonlinear equilibrium differential equations of parabolic two-hinged arches subjected to a midspan concentrated force were derived, as well as the corresponding high-precision approximate analytical solutions of these nonlinear equations. The common rules of complex nonlinear behavior of parabolic two-hinged arches subjected to a midspan concentrated force were investigated by the limitation analysis of these high-precision approximate analytical solutions in discontinuous points: 1) If and only if the modified slenderness ratio is greater than or equal to the limit-pattern critical slenderness ratio, limit-pattern nonlinear behavior occurs in parabolic two-hinged arches subjected to a midspan concentrated force. Moreover, multiple extreme points appear on the limit-pattern nonlinear equilibrium path, and the number of extreme points is positively correlated with the parameter
| [1] |
陈宝春, 张梦娇, 刘君平, 等. 我国混凝土拱桥应用现状与展望[J]. 福州大学学报(自然科学版), 2021, 49(5): 716-726.
CHEN Baochun, ZHANG Mengjiao, LIU Junping, et al. Application and prospects of concrete arch bridges in China[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(5): 716-726.
|
| [2] |
ZHENG J L, WANG J J. Concrete-filled steel tube arch bridges in China[J]. Engineering, 2018, 4(1): 143-155. doi: 10.1016/j.eng.2017.12.003
|
| [3] |
张承文, 淳庆, 花全均, 等. 基于元遗传算法的石拱桥传感器优化布置及评价方法研究[J/OL]. 西南交通大学学报, 2024: 1-11. (2024-10-10). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240913002&dbname=CJFD&dbcode=CJFQ.
|
| [4] |
彭仪普, 汤致远, 陈立, 等. 基于车-桥耦合的系杆拱桥吊杆疲劳损伤分析[J]. 西南交通大学学报, 2025, 60(6): 1447-1454.
PENG Yipu, TANG Zhiyuan, CHEN Li, et al. Fatigue damage of tied-arch bridge hangers based ontrain-bridge coupling[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1447-1454.
|
| [5] |
曾永平, 刘力维, 陶奇, 等. CFRP吊索中承式铁路拱桥缆索破断冲击效应数值研究[J/OL]. 西南交通大学学报, 2025: 1-10. (2025-04-07). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20250403005&dbname=CJFD&dbcode=CJFQ.
|
| [6] |
BRADFORD M A, UY B, PI Y L. In-plane elastic stability of Arches under a central concentrated load[J]. Journal of Engineering Mechanics, 2002, 128(7): 710-719. doi: 10.1061/(ASCE)0733-9399(2002)128:7(710)
|
| [7] |
KISS L P. Nonlinear stability analysis of FGM shallow Arches under an arbitrary concentrated radial force[J]. International Journal of Mechanics and Materials in Design, 2020, 16(1): 91-108. doi: 10.1007/s10999-019-09460-2
|
| [8] |
PI Y L, BRADFORD M A, GUO Y L. Revisiting nonlinear in-plane elastic buckling and postbuckling analysis of shallow circular Arches under a central concentrated load[J]. Journal of Engineering Mechanics, 2016, 142(8): 04016046. doi: 10.1061/(ASCE)EM.1943-7889.0001098
|
| [9] |
PI Y L, BRADFORD M A, LIU A R. Nonlinear equilibrium and buckling of fixed shallow Arches subjected to an arbitrary radial concentrated load[J]. International Journal of Structural Stability and Dynamics, 2017, 17(8): 1750082. doi: 10.1142/S0219455417500821
|
| [10] |
PI Y L. Non-linear in-plane multiple equilibria and buckling of pin-ended shallow circular Arches under an arbitrary radial point load[J]. Applied Mathematical Modelling, 2020, 77: 115-136. doi: 10.1016/j.apm.2019.07.021
|
| [11] |
张紫祥, 刘爱荣, 黄永辉, 等. 集中荷载作用下弹性扭转约束层合浅拱的非线性面内稳定[J]. 工程力学, 2020, 37(增1): 13-19, 31.
ZHANG Zixiang, LIU Airong, HUANG Yonghui, et al. Nonlinear in-plane buckling of rotationally restrained shallow laminated Arches under a central concentrated load[J]. Engineering Mechanics, 2020, 37(S1): 13-19, 31.
|
| [12] |
张紫祥, 刘爱荣, 钟子林. 集中荷载作用下FRP圆弧拱的面内非线性弹性失稳研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(2): 230-234, 258.
ZHANG Zixiang, LIU Airong, ZHONG Zilin. Nonlinear in-plane elastic buckling of FRP circular arch subjected to a central concentrated load[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2019, 51(2): 230-234, 258.
|
| [13] |
CAI J G, XU Y X, FENG J, et al. Effects of temperature variations on the in-plane stability of steel arch bridges[J]. Journal of Bridge Engineering, 2012, 17(2): 232-240. doi: 10.1061/(ASCE)BE.1943-5592.0000208
|
| [14] |
CAI J G, FENG J, CHEN Y, et al. In-plane elastic stability of fixed parabolic shallow Arches[J]. Science in China Series E: Technological Sciences, 2009, 52(3): 596-602. doi: 10.1007/s11431-009-0057-9
|
| [15] |
BRADFORD M A, PI Y L, YANG G T, et al. Effects of approximations on non-linear in-plane elastic buckling and postbuckling analyses of shallow parabolic Arches[J]. Engineering Structures, 2015, 101: 58-67. doi: 10.1016/j.engstruct.2015.07.008
|
| [16] |
刘璐璐, 刘爱荣, 卢汉文. T型截面拱在拱顶集中力作用下的平面外弯扭失稳[J]. 工程力学, 2020, 37(增1): 151-156.
LIU Lulu, LIU Airong, LU Hanwen. Flexural-torsional buckling of pin-ended Arches with t-section under a central radial concentrated load[J]. Engineering Mechanics, 2020, 37(S1): 151-156.
|
| [17] |
TSIATAS G C, BABOUSKOS N G. Linear and geometrically nonlinear analysis of non-uniform shallow arches under a central concentrated force[J]. International Journal of Non-Linear Mechanics, 2017, 92: 92-101. doi: 10.1016/j.ijnonlinmec.2017.03.019
|
| [18] |
BATENI M, ESLAMI M R. Non-linear in-plane stability analysis of FGM circular shallow Arches under central concentrated force[J]. International Journal of Non-Linear Mechanics, 2014, 60: 58-69. doi: 10.1016/j.ijnonlinmec.2014.01.001
|
| [19] |
KISS L P, JALALOVA P, MEHDIYEV Z. Deformations and internal forces in Arches under a concentrated force[J]. Journal of Mechanics of Materials and Structures, 2023, 18(4): 551-565. doi: 10.2140/jomms.2023.18.551
|
| [20] |
姜正荣, 邱俊明, 石开荣, 等. 考虑杆件初弯曲的弦支穹顶结构非线性屈曲分析[J]. 西南交通大学学报, 2025, 60(3): 561-568.
JIANG Zhengrong, QIU Junming, SHI Kairong, et al. Nonlinear buckling analysis of suspended domes considering initial curvature of members[J]. Journal of Southwest Jiaotong University, 2025, 60(3): 561-568.
|
| [21] |
HU C F, PI Y L, GAO W, et al. In-plane non-linear elastic stability of parabolic Arches with different rise-to-span ratios[J]. Thin-Walled Structures, 2018, 129: 74-84. doi: 10.1016/j.tws.2018.03.019
|
| [22] |
HU C F, LI Z, LIU Z W, et al. In-plane non-linear elastic stability of arches subjected to multi-pattern distributed load[J]. Thin-Walled Structures, 2020, 154: 106810. doi: 10.1016/j.tws.2020.106810
|
| [23] |
BRADFORD M A, WANG T, PI Y L, et al. In-plane stability of parabolic arches with horizontal spring supports. I: theory[J]. Journal of Structural Engineering, 2007, 133(8): 1130-1137. doi: 10.1061/(ASCE)0733-9445(2007)133:8(1130)
|
| [24] |
胡常福, 雷亮亮, 陈海龙, 等. 等截面抛物线拱桥内力实用解析解研究[J]. 铁道科学与工程学报, 2011, 8(5): 12-18.
HU Changfu, LEI Liangliang, CHEN Hailong, et al. Research on practical analytic solution of parabolic arch bridges with uniform section[J]. Journal of Railway Science and Engineering, 2011, 8(5): 12-18.
|
| [25] |
HU C F, LI Z, HU Q S. On non-linear behavior and buckling of arch-beam structures[J]. Engineering Structures, 2021, 239: 112214. doi: 10.1016/j.engstruct.2021.112214
|