• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 61 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
CAO Yungang, ZENG Yahui, CHENG Haibo, SUI Baikai, ZHAO Jun, PAN Rumeng. Multi-view Method for Forest Fire Detection Based on Omni-Dimensional Dynamic Convolution and Focal-IoU[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 151-159. doi: 10.3969/j.issn.0258-2724.20240229
Citation: CAO Yungang, ZENG Yahui, CHENG Haibo, SUI Baikai, ZHAO Jun, PAN Rumeng. Multi-view Method for Forest Fire Detection Based on Omni-Dimensional Dynamic Convolution and Focal-IoU[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 151-159. doi: 10.3969/j.issn.0258-2724.20240229

Multi-view Method for Forest Fire Detection Based on Omni-Dimensional Dynamic Convolution and Focal-IoU

doi: 10.3969/j.issn.0258-2724.20240229
  • Received Date: 15 May 2024
  • Rev Recd Date: 08 Jul 2024
  • Available Online: 20 Sep 2025
  • Publish Date: 21 Jul 2024
  • Forest fire detection is crucial for forest fire emergency rescue. To address the shortcomings of existing models in sample quality, multi-scale issues, and generalization capability across multi-view images, a method for forest fire detection based on YOLO (FFD-YOLO) was proposed. First, a multi-view visible light image dataset for detecting forest fire from of high point view (FFHPV) was constructed to enhance the model’s learning capability for multi-view fire information. Second, omni-dimensional dynamic convolution was introduced to develop an omni-dimensional spatial pyramid pooling (OD-SPP) to improve the model’s feature extraction capacity for multi-view fire characteristics. Finally, a wise intersection over union (Wise-IoU) loss function with a dynamic non-monotonic focusing mechanism was introduced to mitigate the impact of low-quality data on model precision and enhance small-target fire detection. Experimental results have demonstrated that FFD-YOLO increased precision by 3.9%, recall by 3.7%, mean average precision (mAP) by 4.0%, and F1-score by 0.038 compared to YOLOv7. In comparative experiments with YOLOv5, YOLOv8, dense distinct query (DDQ), detection transformer with improved denoising anchor boxes (DINO), Faster R-CNN, Sparse R-CNN, Mask R-CNN, FCOS, and YOLOX, FFD-YOLO attained 75.3% precision, 73.8% recall, 77.6% mAP, and 0.745 F1-score, validating its feasibility and effectiveness.

     

  • loading
  • [1]
    贾一鸣, 张长春, 胡春鹤, 等. 基于少样本学习的森林火灾烟雾检测方法[J]. 北京林业大学学报, 2023, 45(9): 137-146. doi: 10.12171/j.1000-1522.20230044

    JIA Yiming, ZHANG Changchun, HU Chunhe, et al. Forest fire smoke detection method based on few-shot learning[J]. Journal of Beijing Forestry University, 2023, 45(9): 137-146. doi: 10.12171/j.1000-1522.20230044
    [2]
    周浪, 樊坤, 瞿华, 等. 基于Sparse-DenseNet模型的森林火灾识别研究[J]. 北京林业大学学报, 2020, 42(10): 36-44.

    ZHOU Lang, FAN Kun, QU Hua, et al. Forest fire identification based on sparse-DenseNet model[J]. Journal of Beijing Forestry University, 2020, 42(10): 36-44.
    [3]
    段祝庚, 肖化顺. 基于光束法双像解析的森林火点定位技术[J]. 西南交通大学学报, 2013, 48(5): 870-877.

    DUAN Zhugeng, XIAO Huashun. Forest fire-point location based on bundle adjustment of double images[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 870-877.
    [4]
    孙福洋, 李晓松, 李增元, 等. 近实时中高空间分辨率森林火灾监测系统展望[J]. 遥感学报, 2020, 24(5): 543-549.

    SUN Fuyang, LI Xiaosong, LI Zengyuan, et al. Near-real-time forest fire monitoring system with medium and high spatial resolutions[J]. Journal of Remote Sensing, 2020, 24(5): 543-549.
    [5]
    CELIK T. Fast and efficient method for fire detection using image processing[J]. ETRI Journal, 2010, 32(6): 881-890. doi: 10.4218/etrij.10.0109.0695
    [6]
    LI T, YE M, PANG F, et al. An efficient fire detection method based on orientation feature[J]. International Journal of Control, Automation and Systems, 2013, 11(5): 1038-1045. doi: 10.1007/s12555-012-9314-y
    [7]
    李泽琛, 李恒超, 胡文帅, 等. 多尺度注意力学习的Faster R-CNN口罩人脸检测模型[J]. 西南交通大学学报, 2021, 56(5): 1002-1010.

    LI Zechen, LI Hengchao, HU Wenshuai, et al. Masked face detection model based on multi-scale attention-driven faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010.
    [8]
    潘磊, 郭宇诗, 李恒超, 等. 面向舰船目标检测的SAR图像数据PCGAN生成方法[J]. 西南交通大学学报, 2024, 59(3): 547-555.

    PAN Lei, GUO Yushi, LI Hengchao, et al. SAR image generation method via PCGAN for ship detection[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 547-555.
    [9]
    华泽玺, 施会斌, 罗彦, 等. 基于轻量级YOLO-v4模型的变电站数字仪表检测识别[J]. 西南交通大学学报, 2024, 59(1): 70-80.

    HUA Zexi, SHI Huibin, LUO Yan, et al. Detection and recognition of digital instruments based on lightweight YOLO-v4 model at substations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 70-80.
    [10]
    BARMPOUTIS P, DIMITROPOULOS K, KAZA K, et al. Fire detection from images using faster R-CNN and multidimensional texture analysis[C]//ICASSP 2019−2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton: IEEE, 2019: 8301-8305.
    [11]
    回天, 哈力旦•阿布都热依木, 杜晗. 结合Faster R-CNN的多类型火焰检测[J]. 中国图象图形学报, 2019, 24(1): 73-83.

    HUI Tian, HALIDAN Abudureyimu, DU Han. Multi-type flame detection combined with Faster R-CNN[J]. Journal of Image and Graphics, 2019, 24(1): 73-83.
    [12]
    朱军, 张天奕, 谢亚坤, 等. 顾及小目标特征的视频人流量智能统计方法[J]. 西南交通大学学报, 2022, 57(4): 705-712, 736. doi: 10.3969/j.issn.0258-2724.20200425

    ZHU Jun, ZHANG Tianyi, XIE Yakun, et al. Intelligent statistic method for video pedestrian flow considering small object features[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 705-712,736. doi: 10.3969/j.issn.0258-2724.20200425
    [13]
    ZHAO L, ZHI L Q, ZHAO C, et al. Fire-YOLO: a small target object detection method for fire inspection[J]. Sustainability, 2022, 14(9): 4930. doi: 10.3390/su14094930
    [14]
    MSEDDI W S, GHALI R, JMAL M, et al. Fire detection and segmentation using YOLOv5 and U-NET[C]//2021 29th European Signal Processing Conference (EUSIPCO). Dublin: IEEE, 2021: 741-745.
    [15]
    LIN J, LIN H F, WANG F. STPM_SAHI: a small-target forest fire detection model based on swin transformer and slicing aided hyper inference[J]. Forests, 2022, 13(10): 1603. doi: 10.3390/f13101603
    [16]
    秦瑞, 张为. 一种无锚框结构的多尺度火灾检测算法[J]. 西安电子科技大学学报, 2022, 49(6): 111-119.

    QIN Rui, ZHANG Wei. Multi-scale fire detection algorithm with an anchor free structure[J]. Journal of Xidian University, 2022, 49(6): 111-119.
    [17]
    唐丹妮. 面向森林火灾检测的深度学习方法研究[D]. 西安: 西安理工大学, 2021.
    [18]
    LI Y M, ZHANG W, LIU Y Y, et al. An efficient fire and smoke detection algorithm based on an end-to-end structured network[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105492. doi: 10.1016/j.engappai.2022.105492
    [19]
    YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam: ACM, 2016: 516-520.
    [20]
    TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-04-08)[2024-05-08]. http://arxiv.org/abs/2301.10051.
    [21]
    LI C, ZHOU A J, YAO A B. Omni-dimensional dynamic convolution[EB/OL]. (2022-09-16)[2024-05-08]. http://arxiv.org/abs/2209.07947.
    [22]
    杨艳春, 闫岩, 王可. 基于注意力机制与光照感知网络的红外与可见光图像融合[J]. 西南交通大学学报, 2024, 59(5): 1204-1214. doi: 10.3969/j.issn.0258-2724.20230529

    YANG Yanchun, YAN Yan, WANG Ke. Infrared and visible image fusion based on attention mechanism and illumination-aware network[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1204-1214. doi: 10.3969/j.issn.0258-2724.20230529
    [23]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//Computer Vision—ECCV 2014. Cham: Springer, 2014: 346-361.
    [24]
    REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 658-666.
    [25]
    ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. doi: 10.1609/aaai.v34i07.6999
    [26]
    GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2024-05-08]. http://arxiv.org/abs/2205.12740.
    [27]
    PADILLA R, NETTO S L, DA SILVA E A B. A survey on performance metrics for object-detection algorithms[C]//2020 International Conference on Systems, Signals and Image Processing (IWSSIP). Niterói: IEEE, 2020: 237-242.
    [28]
    ZHANG S L, WANG X J, WANG J Q, et al. Dense distinct query for end-to-end object detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023: 7329-7338.
    [29]
    ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/OL]. (2022-07-01)[2024-05-08]. http://arxiv.org/abs/2203.03605.
    [30]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [31]
    SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 14449-14458.
    [32]
    HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988.
    [33]
    TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 9626-9635.
    [34]
    GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. (2021-08-06)[2024-05-08] . http://arxiv.org/abs/2107.08430.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article views(112) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return