| Citation: | LI Hengchao, LIU Yanqiong, YIN Jiajie, LEI Sen. Infrared Small Target Detection Based on Temporal Local Spatial Entropy and Spatial Multi-Scale Feature[J]. Journal of Southwest Jiaotong University, 2025, 60(6): 1527-1536. doi: 10.3969/j.issn.0258-2724.20240225 |
Infrared imaging technology is widely used in military and civilian fields. As an indispensable part of the application, infrared small target detection has important practical significance. However, the existing methods hardly distinguish the real target from the target-like sparse structure. Therefore, an infrared small target detection algorithm was proposed by fusing the temporal local spatial entropy and the spatial multi-scale feature. In the temporal branch, a density peak clustering algorithm based on the similarity measurement of patches was designed to locate the candidate region of infrared small targets and reduce redundant calculation of backgrounds. Moreover, temporal local spatial entropy based on the local difference between frames was proposed to explore the variations in target and background entropy values in local regions and solve the false alarm caused by the target-like sparse structure. In addition, the spatial multi-scale feature branch was introduced to construct the spatio-temporal fusion feature, reducing the missed detection rate in the location of candidate regions and improving the detection ability of small targets at different scales. Compared with that of nine algorithms on five sets of sequences, the background suppression factor (BSF) of the proposed method is superior. The BSF is 2.02 times better than that of the suboptimal method on the best-performing sequence 5, and it is optimal on four sets of sequences in the receiver operating characteristic curve (ROC). In summary, compared with other methods, the proposed method can detect small targets accurately under the target-like sparse structure.
| [1] |
鞠宏浩, 程楷钧, 邓彩连, 等. 无人机空地网络研究综述[J]. 西南交通大学学报, 2024, 59(4): 877-889.
JU Honghao, CHENG Kaijun, DENG Cailian, et al. A survey on air-ground networks of unmanned aerial vehicles[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 877-889.
|
| [2] |
赵鹏鹏, 李庶中, 李迅, 等. 融合视觉显著性和局部熵的红外弱小目标检测[J]. 中国光学, 2022, 15(2): 267-275. doi: 10.37188/CO.2021-0170
ZHAO Pengpeng, LI Shuzhong, LI Xun, et al. Infrared dim small target detection based on visual saliency and local entropy[J]. Chinese Optics, 2022, 15(2): 267-275. doi: 10.37188/CO.2021-0170
|
| [3] |
KOU R K, WANG C P, PENG Z M, et al. Infrared small target segmentation networks: a survey[J]. Pattern Recognition, 2023, 143: 109788. doi: 10.1016/j.patcog.2023.109788
|
| [4] |
DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[C]//Signal and Data Processing of Small Targets 1999. Denver: SPIE, 1999: 74-83.
|
| [5] |
楼晨风, 张湧, 尹佳琪. 基于Robinson-Guard滤波器和像素聚拢度的小目标检测方法[J]. 光学学报, 2020, 40(15): 19-28.
LOU Chenfeng, ZHANG Yong, YIN Jiaqi. Small target detection method based on Robinson-guard filter and pixel convergence[J]. Acta Optica Sinica, 2020, 40(15): 19-28.
|
| [6] |
吴文怡, 吴一全. 基于Contourlet变换的红外弱小目标检测方法[J]. 红外与激光工程, 2008, 37(1): 136-138.
WU Wenyi, WU Yiquan. Method of infrared dim targets detection based on Contourlet transform[J]. Infrared and Laser Engineering, 2008, 37(1): 136-138.
|
| [7] |
SUN Y Q, TIAN J W, LIU J. Background suppression based-on wavelet transformation to detect infrared target[C]//2005 International Conference on Machine Learning and Cybernetics. Guangzhou: IEEE, 2005: 4611-4615.
|
| [8] |
TANG W, ZHENG Y B, LU R T, et al. A novel infrared dim small target detection algorithm based on frequency domain saliency[C]//2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xi’an: IEEE, 2016: 1053-1057.
|
| [9] |
李俊宏, 张萍, 王晓玮, 等. 红外弱小目标检测算法综述[J]. 中国图象图形学报, 2020, 25(9): 1739-1753. doi: 10.11834/jig.190574
LI Junhong, ZHANG Ping, WANG Xiaowei, et al. Infrared small-target detection algorithms: a survey[J]. Journal of Image and Graphics, 2020, 25(9): 1739-1753. doi: 10.11834/jig.190574
|
| [10] |
DAI Y M, WU Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3752-3767. doi: 10.1109/JSTARS.2017.2700023
|
| [11] |
ZHANG L D, PENG Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382-415. doi: 10.3390/rs11040382
|
| [12] |
LIU T, YANG J G, LI B Y, et al. Nonconvex tensor low-rank approximation for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5614718.
|
| [13] |
PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. doi: 10.1109/TGRS.2013.2242477
|
| [14] |
ZHANG X Y, RU J Y, WU C D. Infrared small target detection based on gradient correlation filtering and contrast measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5603012.
|
| [15] |
DENG L Z, ZHU H, TAO C, et al. Infrared moving point target detection based on spatial–temporal local contrast filter[J]. Infrared Physics & Technology, 2016, 76: 168-173.
|
| [16] |
PANG D D, SHAN T, MA P G, et al. A novel spatiotemporal saliency method for low-altitude slow small infrared target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 7000705.
|
| [17] |
DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2021: 949-958.
|
| [18] |
LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection[J]. IEEE Transactions on Image Processing, 2023, 32: 1745-1758. doi: 10.1109/TIP.2022.3199107
|
| [19] |
YAN P T, HOU R Z, DUAN X G, et al. STDMANet: spatio-temporal differential multiscale attention network for small moving infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5602516.
|
| [20] |
KOU R K, WANG C P, FU Q, et al. Infrared small target detection based on the improved density peak global search and human visual local contrast mechanism[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6144-6157. doi: 10.1109/JSTARS.2022.3193884
|
| [21] |
李泽琛, 李恒超, 胡文帅, 等. 多尺度注意力学习的Faster R-CNN口罩人脸检测模型[J]. 西南交通大学学报, 2021, 56(5): 1002-1010.
LI Zechen, LI Hengchao, HU Wenshuai, et al. Masked face detection model based on multi-scale attention-driven faster R-CNN[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1002-1010.
|
| [22] |
回丙伟, 宋志勇, 范红旗, 等. 地/空背景下红外图像弱小飞机目标检测跟踪数据集[J]. 中国科学数据, 2020, 5(3): 291-302.
HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background[J]. China Scientific Data, 2020, 5(3): 291-302.
|
| [23] |
LIU J, HE Z Q, CHEN Z L, et al. Tiny and dim infrared target detection based on weighted local contrast[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1780-1784. doi: 10.1109/LGRS.2018.2856762
|
| [24] |
ZHANG L D, PENG L B, ZHANG T F, et al. Infrared small target detection via non-convex rank approximation minimization joint l2, 1 norm[J]. Remote Sensing, 2018, 10(11): 1821-1846. doi: 10.3390/rs10111821
|
| [25] |
DU P, HAMDULLA A. Infrared moving small-target detection using spatial–temporal local difference measure[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(10): 1817-1821.
|
| [26] |
SUN H, BAI J X, YANG F, et al. Receptive-field and direction induced attention network for infrared dim small target detection with a large-scale dataset IRDST[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5000513.
|