• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 61 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
JING Guoqing, CHENG Yan, LIU Guixian. Influence of Number of Pebble Fracture Surfaces on Direct Shear Properties of Aggregates[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 111-116. doi: 10.3969/j.issn.0258-2724.20240161
Citation: JING Guoqing, CHENG Yan, LIU Guixian. Influence of Number of Pebble Fracture Surfaces on Direct Shear Properties of Aggregates[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 111-116. doi: 10.3969/j.issn.0258-2724.20240161

Influence of Number of Pebble Fracture Surfaces on Direct Shear Properties of Aggregates

doi: 10.3969/j.issn.0258-2724.20240161
  • Received Date: 03 Apr 2024
  • Rev Recd Date: 17 Oct 2024
  • Available Online: 20 Oct 2025
  • Publish Date: 30 Oct 2024
  • In order to investigate the influence of the number of ballast particle fracture surfaces on the direct shear performance of the ballast bed, pebbles were crushed to obtain ballast aggregates with different numbers of fracture surfaces. Direct shear tests were carried out under different vertical stresses to obtain the stress–strain relationship and deformation characteristics of ballast aggregates. Based on formula calculation, the variation laws of peak shear strength and internal friction angle of ballast aggregates with vertical stress were obtained. The results show that, in terms of strength characteristics, when the number of fracture surfaces is 0, 1, 2, and 3, the shear strength and internal friction angle of ballast aggregates under the same vertical stress increase with the number of fracture surfaces. The shear strength increases by 14.7%–25.6%, 12.2%–27.4%, and 6.0%–10.1%, respectively. In terms of deformation characteristics, the shear shrinkage of ballast aggregates increases with fracture surface number, with a maximum increase of 76.4%, while the shear dilation decreases with a maximum decrease of 20.8%.

     

  • loading
  • [1]
    井国庆. 铁路有砟道床[M]. 北京: 中国铁道出版社, 2012: 196-199.
    [2]
    曾树谷. 铁路散粒体道床[M]. 北京: 中国铁道出版社, 1997: 41.
    [3]
    GUO Y L, XIE J L, FAN Z, et al. Railway ballast material selection and evaluation: a review[J]. Construction and Building Materials, 2022, 344: 128218. doi: 10.1016/j.conbuildmat.2022.128218
    [4]
    TOLOMEO M, MCDOWELL G R. Modelling real particle shape in DEM: a comparison of two methods with application to railway ballast[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 159: 105-221.
    [5]
    DISSANAYAKE D, KURUKULASURIYA L C, DISSANAYAKE P. Evaluation of shear strength parameters of rail track ballast in Sri Lanka[J]. Journal of the National Science Foundation of Sri Lanka, 2016, 44(1): 61-67. doi: 10.4038/jnsfsr.v44i1.7982
    [6]
    崔旭浩, 肖宏, 令行. 脏污对散体道床动态行为影响的宏细观分析[J]. 铁道学报, 2022, 44(9): 120-127. doi: 10.3969/j.issn.1001-8360.2022.09.016

    CUI Xuhao, XIAO Hong, LING Xing. Macro and micro analysis of effect of ballast fouling on dynamic characteristics of ballast bed[J]. Journal of the China Railway Society, 2022, 44(9): 120-127. doi: 10.3969/j.issn.1001-8360.2022.09.016
    [7]
    陈宪麦, 陈楠, 王日吉, 等. 粗、细粒径煤质对道砟颗粒剪切性能的影响[J]. 中南大学学报(自然科学版), 2022, 53(7): 2789-2797. doi: 10.11817/j.issn.1672-7207.2022.07.035

    CHEN Xianmai, CHEN Nan, WANG Riji, et al. Influence of coarse and fine coal quality on shear performance of ballast particles[J]. Journal of Central South University (Science and Technology), 2022, 53(7): 2789-2797. doi: 10.11817/j.issn.1672-7207.2022.07.035
    [8]
    周陶勇, 夏建军, 许平. 道砟颗粒二维廓形对破碎的影响研究[J]. 公路交通科技, 2022, 39(11): 56-61. doi: 10.3969/j.issn.1002-0268.2022.11.008

    ZHOU Taoyong, XIA Jianjun, XU Ping. Study on influence of railway ballast 2D profile on crushing[J]. Journal of Highway and Transportation Research and Development, 2022, 39(11): 56-61. doi: 10.3969/j.issn.1002-0268.2022.11.008
    [9]
    MISHRA D, NAZIUR MAHMUD S M. Effect of particle size and shape characteristics on ballast shear strength: a numerical study using the direct shear test[C]//2017 Joint Rail Conference. Philadelphia: [s. n.], 2017.
    [10]
    JING G Q, JI Y M, QIANG W L, et al. Experimental and numerical study on ballast flakiness and elongation index by direct shear test[J]. International Journal of Geomechanics, 2020, 20(10): 04020169. doi: 10.1061/(ASCE)GM.1943-5622.0001791
    [11]
    ZHENG S F, LIU Y, ZHANG N, et al. Experimental studies on shape and size effects on particle breakage of railway ballast[J]. Transportation Geotechnics, 2022, 37: 100883. doi: 10.1016/j.trgeo.2022.100883
    [12]
    JENSEN R P, EDIL T B, BOSSCHER P J, et al. Effect of particle shape on interface behavior of DEM-simulated granular materials[J]. International Journal of Geomechanics, 2001, 1(1): 1-19.
    [13]
    RAO C. Development of three-dimensional image analysis techniques to determine shape and size properties of coarse aggregate[M]. Champaign: University of Illinois at Urbana-Champaign, 2001.
    [14]
    SHI C, FAN Z, CONNOLLY D P, et al. Railway ballast performance: recent advances in the understanding of geometry, distribution and degradation[J]. Transportation Geotechnics, 2023, 41: 101042.
    [15]
    高睿, 石知政, 刘洋泽鹏, 等. 土工格栅对受污道砟直剪特性影响的试验研究[J]. 西南交通大学学报, 2021, 56(6): 1185-1191.

    GAO Rui, SHI Zhizheng, LIU Yangzepeng, et al. Experimental study on effect of geogrid on direct shear behavior of contaminated ballast[J]. Journal of Southwest Jiaotong University, 2021, 56(6): 1185-1191.
    [16]
    INDRARATNA B, WIJEWARDENA L S S, BALASUBRAMANIAM A S. Large-scale triaxial testing of grey wacke rockfill[J]. Géotechnique, 1993, 43(1): 37-51.
    [17]
    RAYMOND G P. Track and support rehabilitation for a mine company railroad[J]. Canadian Geotechnical Journal, 2000, 37(2): 318-332. doi: 10.1139/t99-108
    [18]
    American Railway Engineering and Maintenance-of-Way Association AREMA. Manual for Railway Engineering[S]. AREMA: Lutherville, 2023.
    [19]
    中华人民共和国铁道部. 铁路碎石道砟: TB/T 2140—2008[S]. 北京: 中国铁道出版社, 2008.
    [20]
    井国庆, 强伟乐, 常锦秀, 等. 针片状指数对道砟直剪力学特性的影响[J]. 西南交通大学学报, 2020, 55(4): 688-694. doi: 10.3969/j.issn.0258-2724.20180677

    JING Guoqing, QIANG Weile, CHANG Jinxiu, et al. Effect of flakiness-elongation index on shear behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 688-694. doi: 10.3969/j.issn.0258-2724.20180677
    [21]
    ASADZADEH M, SOROUSH A. Direct shear testing on a rockfill material[J]. Arabian Journal for Science and Engineering, 2009, 34(2): 379-396.
    [22]
    井国庆, 黄红梅, 常锦秀, 等. 清洗后的劣化道砟直剪力学特性分析[J]. 西南交通大学学报, 2017, 52(6): 1055-1060.

    JING Guoqing, HUANG Hongmei, CHANG Jinxiu, et al. Analysis of mechanical characteristics of degradation railway ballast by direct shear test[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1055-1060.
    [23]
    INDRARATNA B, IONESCU D, CHRISTIE H D. Shear behavior of railway ballast based on large-scale triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 439-449. doi: 10.1061/(ASCE)1090-0241(1998)124:5(439)
    [24]
    SUSSMANN T R, RUEL M, CHRISMER S M. Source of ballast fouling and influence considerations for condition assessment criteria[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2289(1): 87-94. doi: 10.3141/2289-12
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(36) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return