• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 61 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
LI Zhongqi, YU Jianfeng, ZHOU Liang. Sliding Mode Active Disturbance Rejection Control Method for Heavy-Haul Trains During Operation[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 197-206, 242. doi: 10.3969/j.issn.0258-2724.20240120
Citation: LI Zhongqi, YU Jianfeng, ZHOU Liang. Sliding Mode Active Disturbance Rejection Control Method for Heavy-Haul Trains During Operation[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 197-206, 242. doi: 10.3969/j.issn.0258-2724.20240120

Sliding Mode Active Disturbance Rejection Control Method for Heavy-Haul Trains During Operation

doi: 10.3969/j.issn.0258-2724.20240120
  • Received Date: 12 Mar 2024
  • Rev Recd Date: 24 Sep 2024
  • Available Online: 30 Jul 2025
  • Publish Date: 31 Oct 2024
  • To resolve the difficulty in controlling heavy-haul trains operating in complex environments caused by insufficient driver experience, a multi-mass dynamic model for multi-locomotive traction was established based on the Locotrol synchronous control principle of the Datong–Qinhuangdao Railway. A controller was designed for the main locomotive, where the total time-varying unknowns, including coupler forces, running resistance, and external disturbances, were regarded as aggregated uncertainties. The acceleration of these uncertainties was further treated as an extended state, enabling real-time estimation and compensation via an extended state observer. Moreover, the fast terminal sliding mode control was introduced to improve the nonlinear error feedback control law in active disturbance rejection control, and an improved adaptive reaching law was employed to refine the dynamic quality of the sliding mode reaching motion. Simulations were conducted on a heavy-haul train with the formation of “1 + 105 + 1 + 105 + controllable end” by incorporating actual line data from Datong–Qinhuangdao Railway and expert driver experience, and compared with traditional methods. The simulation results demonstrate that, compared to conventional sliding mode active disturbance rejection control, the proposed method reduces control force chattering in master-slave locomotives by 23.7%, improves tracking accuracy by 19%, and confines tracking errors within ±0.7 km/h.

     

  • loading
  • [1]
    PHIL H. Optimal strategies for the control of a train[J]. Automatica, 1996, 32(4): 519-532. doi: 10.1016/0005-1098(95)00184-0
    [2]
    LIU R, GOLOVITCHER I M. Energy-efficient operation of rail vehicles[J]. Transportation Research Part A: Policy and Practice, 2003, 37(10): 917-932.
    [3]
    杨辉, 王禹, 李中奇, 等. 专家监督的SAC强化学习重载列车运行优化控制[J]. 控制理论与应用, 2022, 39(5): 799-808. doi: 10.7641/CTA.2021.10132

    YANG Hui, WANG Yu, LI Zhongqi, et al. Supervised SAC reinforcement learning method for heavy haul train optimization control[J]. Control Theory & Applications, 2022, 39(5): 799-808. doi: 10.7641/CTA.2021.10132
    [4]
    何闻. 考虑纵向冲动的重载列车自动驾驶操纵研究[D]. 北京: 中国铁道科学研究院, 2023.
    [5]
    李紫宜, 周艳丽, 杨辉, 等. 面向节能的重载列车辅助驾驶模型预测控制研究[J]. 铁道科学与工程学报, 2024, 21(8): 3107-3118.

    LI Ziyi, ZHOU Yanli, YANG Hui, et al. Study on model predictive control of energy saving assisted driving for heavy-haul trains[J]. Journal of Railway Science and Engineering, 2024, 21(8): 3107-3118.
    [6]
    俞花珍, 黄友能, 王明主, 等. 基于遗传算法的重载列车驾驶策略研究[J]. 铁道学报, 2020, 42(7): 110-116.

    YU Huazhen, HUANG Youneng, WANG Mingzhu, et al. Research on operating strategies of heavy haul train based on genetic algorithm[J]. Journal of the China Railway Society, 2020, 42(7): 110-116.
    [7]
    SUN X B, NIU L P, YAN S S. MPC-PI cascade control method for heavy-haul train[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland: IEEE, 2019: 2527-2532.
    [8]
    孙鹏飞, 张传鑫, 蒋春宏, 等. 结合迭代学习和模型预测的重载列车运行控制[J]. 中国铁道科学, 2023, 44(2): 111-119.

    SUN Pengfei, ZHANG Chuanxin, JIANG Chunhong, et al. Operation control of heavy-haul train based on combination of iterative learning and model prediction[J]. China Railway Science, 2023, 44(2): 111-119.
    [9]
    李中奇, 孙鹏昕, 杨辉, 等. 重载列车离散积分终端滑模预测控制[J]. 控制理论与应用, 2025, 42(2): 235-244.

    LI Zhongqi, SUN Pengxin, YANG Hui, et al. Discrete integral terminal sliding mode predictive control for heavy haul train[J]. Control Theory & Applications, 2025, 42(2): 235-244.
    [10]
    陆小红, 郑木火, 林宏泉. 重载列车智能化操控算法研究与实现[J]. 铁道学报, 2017, 39(1): 11-18. doi: 10.3969/j.issn.1001-8360.2017.01.002

    LU Xiaohong, ZHENG Muhuo, LIN Hongquan. Research on and implementation of intelligent control algorithm for heavy haul train[J]. Journal of the China Railway Society, 2017, 39(1): 11-18. doi: 10.3969/j.issn.1001-8360.2017.01.002
    [11]
    韩京清. 自抗扰控制技术[J]. 前沿科学, 2007, 1(1): 24-31. doi: 10.3969/j.issn.1673-8128.2007.01.004

    HAN Jingqing. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1): 24-31. doi: 10.3969/j.issn.1673-8128.2007.01.004
    [12]
    HUANG Y, XUE W C. Active disturbance rejection control: Methodology and theoretical analysis[J]. ISA Transactions, 2014, 53(4): 963-976. doi: 10.1016/j.isatra.2014.03.003
    [13]
    魏远明, 罗亚中, 朱海洋. 液体运载火箭线性自抗扰容错姿态控制方法[J]. 载人航天, 2022, 28(3): 330-337. doi: 10.3969/j.issn.1674-5825.2022.03.007

    WEI Yuanming, LUO Yazhong, ZHU Haiyang. Linear active disturbance rejection fault tolerant attitude control method for liquid launch vehicle[J]. Manned Spaceflight, 2022, 28(3): 330-337. doi: 10.3969/j.issn.1674-5825.2022.03.007
    [14]
    DONG L, CHEN Z Q, SUN M W, et al. Phase compensation active disturbance rejection control for shimmy vibration with magnetorheological damper of aircraft[J]. Expert Systems with Applications, 2023, 213: 119126.1-119126.9.
    [15]
    ZUO Y F, MEI J, JIANG C Q, et al. Linear active disturbance rejection controllers for PMSM speed regulation system considering the speed filter[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 14579-14592. doi: 10.1109/TPEL.2021.3098723
    [16]
    FENG L Y, SUN X D, YANG Z B, et al. Optimal torque sharing function control for switched reluctance motors based on active disturbance rejection controller[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5): 2600-2608. doi: 10.1109/TMECH.2023.3240986
    [17]
    李伟, 宁君, 李悦琪. 基于自抗扰的反步非奇异终端滑模船舶航向控制器设计[J]. 船舶工程, 2019, 41(11): 83-88.

    LI Wei, NING Jun, LI Yueqi. Backstepping nonsingular terminal sliding mode ship course controller design based on the active disturbance rejection[J]. Ship Engineering, 2019, 41(11): 83-88.
    [18]
    WANG B, YANG J, JIAO H N, et al. Design of auto disturbance rejection controller for train traction control system based on artificial bee colony algorithm[J]. Measurement, 2020, 160: 107812.1-107812.9.
    [19]
    李自康, 戴春辉, 黄翠翠, 等. 基于多种群遗传算法的磁浮列车自抗扰速度控制[J]. 西南交通大学学报, 2025, 60(4): 912-920.

    LI Zikang, DAI Chunhui, HUANG Cuicui, et al. Active disturbance rejection speed control for maglev trains based on multiple population genetic algorithm[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 912-920.
    [20]
    孙友刚, 张丹丹, 吉文, 等. 基于模糊补偿的磁浮列车悬浮系统非奇异终端滑模控制[J]. 西南交通大学学报, 2025, 60(4): 803-811.

    SUN Yougang, ZHANG Dandan, JI Wen, et al. Fuzzy compensation-based non-singular terminal sliding mode control of maglev vehicle levitation system[J]. Journal of Southwest Jiaotong University, 2025, 60(4): 803-811.
    [21]
    付雅婷, 原俊荣, 李中奇, 等. 基于钩缓约束的重载列车驾驶过程优化[J]. 自动化学报, 2019, 45(12): 2355-2365.

    FU Yating, YUAN Junrong, LI Zhongqi, et al. Optimization of heavy haul train operation process based on coupler constraints[J]. Acta Automatica Sinica, 2019, 45(12): 2355-2365.
    [22]
    杨辉, 马红萍, 付雅婷, 等. 基于多质点模型的重载列车制动策略[J]. 北京工业大学学报, 2020, 46(2): 169-179. doi: 10.11936/bjutxb2018110010

    YANG Hui, MA Hongping, FU Yating, et al. Brake strategy for heavy-haul train based on multi-particle model[J]. Journal of Beijing University of Technology, 2020, 46(2): 169-179. doi: 10.11936/bjutxb2018110010
    [23]
    罗建涛. 基于多质点模型的重载列车动力学仿真与分析[J]. 机车电传动, 2019(4): 61-66.

    LUO Jiantao. Dynamic simulation and analysis of heavy haul train based on multi-particle model[J]. Electric Drive for Locomotives, 2019(4): 61-66.
    [24]
    徐明龙, 李谷, 李蔚, 等. 重载组合列车纵向力劣化分析与运行安全研究[J]. 铁道科学与工程学报, 2023, 20(1): 321-332.

    XU Minglong, LI Gu, LI Wei, et al. Analysis of longitudinal force degradation and running safety of heavy-haul combined trains[J]. Journal of Railway Science and Engineering, 2023, 20(1): 321-332.
    [25]
    YANG L Y, LIU L L, ZHANG J. A bi-bandwidth extended state observer for a system with measurement noise and its application to aircraft with abrupt structural damage[J]. Aerospace Science and Technology, 2021, 114: 106742.1-106742.12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views(107) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return