• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
YANG Gang, DENG Qin, XU Wuyi, CHENG Lei. Empirical Fourier Decomposition Algorithm Based on Spectrum Reconstruction and Its Application in Bearing Fault Diagnosis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240050
Citation: YANG Gang, DENG Qin, XU Wuyi, CHENG Lei. Empirical Fourier Decomposition Algorithm Based on Spectrum Reconstruction and Its Application in Bearing Fault Diagnosis[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240050

Empirical Fourier Decomposition Algorithm Based on Spectrum Reconstruction and Its Application in Bearing Fault Diagnosis

doi: 10.3969/j.issn.0258-2724.20240050
  • Received Date: 31 Jan 2024
  • Rev Recd Date: 15 Jun 2025
  • Available Online: 02 Dec 2025
  • To address the tendency of spectral segmentation boundaries concentrating on local narrow bands when the empirical Fourier decomposition (EFD) method was applied to bearing fault signals, an order statistics filter (OSF) was used to simplify the frequency spectrum of the acquired bearing vibration signal, and then averaging and sliding processing and pre-segmentation were performed. To address the potential problem of excessive decomposition, a boundary fusion algorithm based on the frequency-domain squared Gini index (FDSGI) was proposed to adaptively determine segmentation boundaries and decomposition modes. The envelope spectrum harmonic significance (ESHS) indicator was used to select the optimal components. Further, bearing fault diagnosis was enabled through envelope spectrum analysis of the optimal components. The comparative test of bearing fault simulation signals and experimental signals demonstrates that empirical Fourier decomposition based on spectrum reconstruction (SREFD) outperforms EFD and empirical wavelet transform (EWT) in terms of spectral segmentation accuracy. The processed signals allow for clearer observation of bearing fault characteristic frequencies and their harmonics, which validates the effectiveness and robustness of the proposed method.

     

  • loading
  • [1]
    LIU R N, YANG B Y, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
    [2]
    ZHAO Y J, QIN B F, ZHOU Y H, et al. Bearing fault diagnosis based on inverted mel-scale frequency cepstral coefficients and deformable convolution networks[J]. Measurement Science and Technology, 2023, 34(5): 055404. doi: 10.1088/1361-6501/acb0ea
    [3]
    ZHANG R X, GU Y. A transfer learning framework with a one-dimensional deep subdomain adaptation network for bearing fault diagnosis under different working conditions[J]. Sensors, 2022, 22(4): 1624. doi: 10.3390/s22041624
    [4]
    杨岗, 徐五一, 邓琴, 等. 基于复合基尼指数和最大相关峭度特征模态分解的轴承故障诊断算法[J]. 机车电传动, 2023(4): 9-17.

    YANG Gang, XU Wuyi, DENG Qin, et al. Bearing fault diagnosis algorithm based on maximum correlated kurtosis feature mode decomposition and compound Gini index[J]. Electric Drive for Locomotives, 2023(4): 9-17.
    [5]
    HU Y, LI F C, LI H G, et al. An enhanced empirical wavelet transform for noisy and non-stationary signal processing[J]. Digital Signal Processing, 2017, 60: 220-229. doi: 10.1016/j.dsp.2016.09.012
    [6]
    程尧, 陈丙炎, 张卫华, 等. 基于加权联合提升包络谱的轴箱轴承故障诊断[J]. 西南交通大学学报, 2024, 59(1): 142-150.

    CHENG Yao, CHEN Bingyan, ZHANG Weihua, et al. Fault diagnosis of axle-box bearing based on weighted combined improved envelope spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 142-150.
    [7]
    易彩, 林建辉, 汪浩, 等. VMD引导的轮对与轴承复合故障诊断方法[J]. 西南交通大学学报, 2024, 59(1): 151-159.

    YI Cai, LIN Jianhui, WANG Hao, et al. Compound fault diagnosis method guided by variational mode decomposition for wheelsets and bearings[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 151-159.
    [8]
    陈丙炎, 谷丰收, 张卫华, 等. 基于多带加权包络谱的轴箱轴承故障诊断[J]. 西南交通大学学报, 2024, 59(1): 201-210.

    CHEN Bingyan, GU Fengshou, ZHANG Weihua, et al. Axle-box bearing fault diagnosis based on multiband weighted envelope spectrum[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 201-210.
    [9]
    QIN L M, YANG G, LV K, et al. An adaptive generalized logarithm sparse regularization method and its application in rolling bearing fault diagnosis[J]. Measurement Science and Technology, 2023, 34(3): 035118. doi: 10.1088/1361-6501/acaa4c
    [10]
    WANG B X, LIAO Y H, DING C C, et al. Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings[J]. ISA Transactions, 2020, 101: 366-378. doi: 10.1016/j.isatra.2020.01.037
    [11]
    QIN L M, YANG G, SUN Q. Maximum correlation Pearson correlation coefficient deconvolution and its application in fault diagnosis of rolling bearings[J]. Measurement, 2022, 205: 112162. doi: 10.1016/j.measurement.2022.112162
    [12]
    CHEN B Y, ZHANG W H, SONG D L, et al. Blind deconvolution assisted with periodicity detection techniques and its application to bearing fault feature enhancement[J]. Measurement, 2020, 159: 107804. doi: 10.1016/j.measurement.2020.107804
    [13]
    CHEN Z Y, LI Z R, WU J, et al. Deep residual shrinkage relation network for anomaly detection of rotating machines[J]. Journal of Manufacturing Systems, 2022, 65: 579-590. doi: 10.1016/j.jmsy.2022.10.014
    [14]
    CHEN Z Y, WU J, DENG C, et al. Deep attention relation network: a zero-shot learning method for bearing fault diagnosis under unknown domains[J]. IEEE Transactions on Reliability, 2023, 72(1): 79-89. doi: 10.1109/TR.2022.3177930
    [15]
    CHEN Z Y, WANG X Q, WU J, et al. Relational conduction graph network for intelligent fault diagnosis of rotating machines under small fault samples[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3514511.
    [16]
    JIN Z Z, XIAO Y L, HE D Q, et al. Fault diagnosis of bearing based on refined piecewise composite multivariate multiscale fuzzy entropy[J]. Digital Signal Processing, 2023, 133: 103884. doi: 10.1016/j.dsp.2022.103884
    [17]
    ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124. doi: 10.1016/j.ymssp.2005.12.002
    [18]
    GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [19]
    冯博, 李辉, 郑海起. 基于经验小波变换的轴承故障诊断研究[J]. 轴承, 2015(12): 53-58.

    FENG Bo, LI Hui, ZHENG Haiqi. Study on fault diagnosis for bearings based on empirical wavelet transform[J]. Bearing, 2015(12): 53-58.
    [20]
    盛嘉玖, 陈果, 康玉祥, 等. 一种用于滚动轴承故障诊断的改进EWT方法[J]. 航空动力学报, 2024, 39(9): 371-383.

    SHENG Jiajiu, CHEN Guo, KANG Yuxiang, et al. An improved EWT method for fault diagnosis of rolling bearings[J]. Journal of Aerospace Power, 2024, 39(9): 371-383.
    [21]
    GILLES J, TRAN G, OSHER S. 2D empirical transforms. wavelets, ridgelets, and curvelets revisited[J]. SIAM Journal on Imaging Sciences, 2014, 7(1): 157-186. doi: 10.1137/130923774
    [22]
    SINGH P, JOSHI S D, PATNEY R K, et al. The Fourier decomposition method for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473(2199): 20160871.
    [23]
    黄斯琪, 郑近德, 潘海洋, 等. 最大相关峭度反褶积与傅里叶分解方法相结合的滚动轴承故障诊断[J]. 机械科学与技术, 2020, 39(8): 1163-1170.

    HUANG Siqi, ZHENG Kinde, PAN Ocean et al. Rolling bearing fault diagnosis of maximum correlation kurtosis deconvolution combining with fourier decomposition method[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(8): 1163-1170.
    [24]
    张辉, 张超, 辛阔, 等. 基于FDM和TEO的滚动轴承故障诊断研究[J]. 机电工程, 2021, 38(7): 850-856.

    ZHANG Hui, ZHANG Chao, XIN Kuo, et al. Fault diagnosis of rolling bearing based on FDM and TEO[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(7): 850-856.
    [25]
    ZHOU W, FENG Z R, XU Y F, et al. Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis[J]. Mechanical Systems and Signal Processing, 2022, 163: 108155. doi: 10.1016/j.ymssp.2021.108155
    [26]
    MO Z L, WANG J Y, ZHANG H, et al. Weighted cyclic harmonic-to-noise ratio for rolling element bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(2): 432-442.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(49) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return