• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Yusuo, TIAN Siming, YANG Junxiang, WANG Mingnian, WANG Wei, LI Chuanbao, ZHAO Zhuang, XIAO Peng. Research on the Calculation Method of Falling Rock Impact Load[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240019
Citation: WANG Yusuo, TIAN Siming, YANG Junxiang, WANG Mingnian, WANG Wei, LI Chuanbao, ZHAO Zhuang, XIAO Peng. Research on the Calculation Method of Falling Rock Impact Load[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240019

Research on the Calculation Method of Falling Rock Impact Load

doi: 10.3969/j.issn.0258-2724.20240019
  • Received Date: 09 Jan 2024
  • Accepted Date: 12 May 2025
  • Rev Recd Date: 18 Apr 2024
  • Available Online: 19 May 2025
  • To clarify the relationship between rockfall impact force and impact load in civil engineering, a comprehensive reflection coefficient is introduced to reflect the interaction between falling rocks, cushioning soil layers, and structures (a higher value indicates a more significant impact effect on the structure). A rockfall impact load calculation method based on wave theory is proposed. The size and distribution characteristics of rockfall impact loads were studied through experiments on arched structures with overlying cushioning soil layers subjected to rockfall impacts. The values and influencing patterns of the comprehensive reflection coefficient were obtained. The proposed calculation method was used to analyze the relationship between rockfall impact loads and rockfall impact forces. Through the research, it was clarified that the rockfall impact load on the structure presents a symmetrical parabolic distribution on the cross-section and can be characterized by a quadratic parabolic curve equation controlled by the maximum impact pressure peak at the arch crown and the structural span. The results indicate that within a range of 10 meters of free fall height for falling rocks and a cushioning soil layer thickness of 2.0 meters, there is a significant negative correlation between the comprehensive reflection coefficient and the thickness of the cushioning soil layer. When the thickness of the cushioning soil layer is 2.0 meters, its influence on the shape and free fall height of the falling rock is relatively small, and a value of 0.55 can be used. When the thickness is 1.0 meter and 0.5 meters, the comprehensive reflection coefficient of cuboid falling rocks is greater than that of spherical or conical falling rocks, and it is positively correlated with the falling height of the rocks. The relationship between the resultant force of rockfall impact loads on the structure and the impact force of rocks on the cushioning soil layer depends on the thickness of the cushioning soil layer and the shape of the falling rocks. When the thickness of the cushioning soil layer is 2.0 meters, the two are close, with the former slightly smaller than the latter, making the resultant force of rockfall impact loads equal to the rockfall impact force on the structure, which leans towards safety in structural design. However, when the thickness of the cushioning soil layer is less than 2.0 meters, the reverse is true, and the smaller the thickness, the greater the difference. When the thickness of the cushioning soil layer is 1.0 meter, the average increase of cuboid falling rocks is about 20 times larger than that of spherical or conical ones, and when the thickness is 0.5 meters, the average increase is about 30 and 10 times respectively for the two shapes. Under the same conditions, the resultant impact load of cuboid falling rocks is greater than that of spherical or conical ones, and the difference between them increases as the falling height of the rocks increases or the thickness of the cushioning soil layer decreases.

     

  • [1]
    铁道第二勘测设计院. 铁路工程设计技术手册. 隧道[M]. 北京:中国铁道出版社,1999.
    [2]
    交通部第二公路勘察设计研究院. 公路路基设计规范:JTJ013—95 [S]. 北京:人民交通出版社,1995.
    [3]
    LABIOUSE V, DESCOEUDRES F, MONTANI S. Experimental study of rock sheds impacted by rock blocks[J]. Structural Engineering International, 1996, 6(3): 171-176.
    [4]
    YOSHIDA H, MASUYA H, IHARA T, et al. Experimental study of impulsive design load for rock sheds[J]. IABSE Proceedings, 1988, 127:61-74.
    [5]
    DI PRISCO C, VECCHIOTTI M. Design charts for evaluating impact forces on dissipative granular soil cushions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1529-1541. doi: 10.1061/(ASCE)GT.1943-5606.0000363
    [6]
    CHEN T J, ZHANG G C, XIANG X. Research on rockfall impact process based on viscoelastic contact theory[J]. International Journal of Impact Engineering, 2023, 173: 104431.1-104431.8.
    [7]
    KAWAHARA S, MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics, 2006, 43(3): 329-340. doi: 10.1016/j.jterra.2005.05.009
    [8]
    杨其新,关宝树. 落石冲击力计算方法的试验研究[J]. 铁道学报,1996,18(1): 101-106. doi: 10.3321/j.issn:1001-8360.1996.01.017

    YANG Qixin, GUAN Baoshu. Test and research on calculating method of falling stone impulsive force[J]. Journal of the China Railway Society, 1996, 18(1): 101-106. doi: 10.3321/j.issn:1001-8360.1996.01.017
    [9]
    ZHAO P, XIE L Z, LI L P, et al. Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and EPE[J]. Engineering Structures, 2018, 175: 386-398. doi: 10.1016/j.engstruct.2018.08.046
    [10]
    吴建利,胡卸文,梅雪峰,等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1): 78-87.

    WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 78-87.
    [11]
    YU B X, ZHOU X J, TANG J H, et al. Impact resistance performance and optimization of the sand-EPE composite cushion in rock sheds[J]. Journal of Mountain Science, 2024, 21(2): 676-689. doi: 10.1007/s11629-023-8403-0
    [12]
    BHATTI A Q, KISHI N. Impact response of RC rock-shed girder with sand cushion under falling load[J]. Nuclear Engineering and Design, 2010, 240(10): 2626-2632. doi: 10.1016/j.nucengdes.2010.07.029
    [13]
    何思明,沈均,吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学,2011,32(3): 781-788. doi: 10.3969/j.issn.1000-7598.2011.03.024

    HE Siming, SHEN Jun, WU Yong. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011, 32(3): 781-788. doi: 10.3969/j.issn.1000-7598.2011.03.024
    [14]
    王玉锁,李俊杰,李正辉,等. 落石冲击力评定的离散元颗粒流数值模拟[J]. 西南交通大学学报,2016,51(1): 22-29. doi: 10.3969/j.issn.0258-2724.2016.01.004

    WANG Yusuo, LI Junjie, LI Zhenghui, et al. Assessment of rockfall impact force by particle flow code numerical simulation based on discrete element model[J]. Journal of Southwest Jiaotong University, 2016, 51(1): 22-29. doi: 10.3969/j.issn.0258-2724.2016.01.004
    [15]
    裴向军,刘洋,王东坡. 滚石冲击棚洞砂土垫层耗能缓冲机理研究[J]. 四川大学学报(工程科学版),2016,48(1):15-22.

    PEI Xiangjun,LIU Yang,WANG Dongpo. Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1):15-22.
    [16]
    王玉锁,周良,李正辉,等. 落石冲击下单压式拱形明洞的力学响应[J]. 西南交通大学学报,2017,52(3):505-515.

    WANG Yusuo, ZHOU Liang, LI Zhenghui, et al. Mechanical responses of single-pressure arch-shaped open tunnel structure under rockfall impaction[J]. Journal of Southwest Jiaotong University, 2017, 52(3):505-515.
    [17]
    王玉锁,王涛,周良,等. 跨中受落石冲击的拱形护桥明洞力学响应[J]. 隧道建设(中英文),2018,38(1): 22-32.

    WANG Yusuo, WANG Tao, ZHOU Liang, et al. Mechanical responses of arched protection shed of bridge under rock-fall impaction on midspan of rooftop[J]. Tunnel Construction, 2018, 38(1): 22-32.
    [18]
    王玉锁,周良,王涛,等. 落石冲击下单压式拱形明洞的回填方式[J]. 中国铁道科学,2018,39(2): 71-79. doi: 10.3969/j.issn.1001-4632.2018.02.09

    WANG Yusuo, ZHOU Liang, WANG Tao, et al. Backfill modes of single-pressure arch-shaped open tunnel under rockfall impact[J]. China Railway Science, 2018, 39(2): 71-79. doi: 10.3969/j.issn.1001-4632.2018.02.09
    [19]
    中华人民共和国住房和城乡建设部. 铁路工程结构可靠性设计统一标准:GB 50216—2019[S]. 北京:中国计划出版社,2019.
    [20]
    中华人民共和国住房和城乡建设部. 建筑结构可靠性设计统一标准GB 50068—2018[S]. 北京:中国建筑工业出版社,2018.
    [21]
    KRAUTHAMMER T, PUGLISI R D. Simplified analysis of buried reinforced concrete Arches under simulated nuclear loads[J]. Computers & Structures, 1992, 43(6): 1029-1039.
    [22]
    周健南,金丰年,范华林,等. 震后地下拱结构的抗冲击波动载能力评估[J]. 工程力学,2012,29(2): 159-164,171.

    ZHOU Jiannan, JIN Fengnian, FAN Hualin, et al. Residual dynamic resistance of seismic damaged underground arch[J]. Engineering Mechanics, 2012, 29(2): 159-164,171.
    [23]
    钱七虎. 钱七虎院士论文选集[M]. 北京:科学出版社,2007.
    [24]
    中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB50011—2010(2016年版)[S]. 北京:中国建筑工业出版社,2016.
    [25]
    王玉锁,杨竣翔,肖宗扬,等. 落石对缓冲土层的冲击力及冲击深度理论与试验研究[J]. 西南交通大学学报,西南交通大学学报,2024,9(5): 1078-1085.

    WANG Yusuo, YANG Junxiang, XIAO Zongyang, et al. Theoretical and test study of impact force and impact depth of falling rocks on buffering soil layers[J]. Journal of Southwest Jiaotong University, 2024, 9(5): 1078-1085.
    [26]
    黄晓玉,王兰会. SPSS 24.0 统计分析[M]. 北京:中国人民大学出版社,2021.
  • Relative Articles

    [1]WANG Yusuo, LYU Ningning, WANG Mingnian, TANG Jianhui, YANG Junxiang, ZHAO Zhuang, XIAO Peng, AN Bo. Method of Determining Design Value of Rockfall Block Size Based on the Return Period[J]. Journal of Southwest Jiaotong University, 2025, 60(2): 262-270. doi: 10.3969/j.issn.0258-2724.20240240
    [2]LUO Xun, YANG Jie, TIAN Hongtao, LIU Dagang, WANG Xiaoyong. Characteristics and Calculation Method of Impact Load in Rockburst Tunnel[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1095-1103. doi: 10.3969/j.issn.0258-2724.20220373
    [3]WANG Yusuo, YANG Junxiang, XIAO Zongyang, LI Chuanbao, TIAN Siming, WANG Wei, YAO Qingchen, ZHAO Zhuang. Theoretical and Test Study of Impact Force and Impact Depth of Falling Rocks on Buffering Soil Layers[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1078-1085. doi: 10.3969/j.issn.0258-2724.20230303
    [4]YIN Zihong, ZENG Yi, WEI Honglin, YIN Zhi, GAO Jingjing. Time-Frequency Characteristics of Vibration Acceleration of High-Speed Railway Subgrade Under Ejection Impact Load[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 219-226. doi: 10.3969/j.issn.0258-2724.20211034
    [5]YIN Zihong, ZHU Renzheng, QIU Hongtao, WANG Qingsong. Spatial Distribution Characteristics of Dynamic Displacement of Heavy-Haul Railway Subgrade System under Launching Impact Load[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 777-784. doi: 10.3969/j.issn.0258-2724.20191106
    [6]WANG Luming, LIU Yanhui, ZHU Wenkai, HE Tingjun, KANG Xiangjie. Damage Assessment Method for Concrete-Filled Steel Tubular Columns under Impact Loading[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 796-803, 819. doi: 10.3969/j.issn.0258-2724.20181037
    [7]LI Huadong, ZUO Mingyu, LI Pu, ZHAO Jinheng. Dynamic Response Analysis of Passive Flexible Protection System under Impact of Rockfalls[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1297-1305. doi: 10.3969/j.issn.0258-2724.20190514
    [8]QI Xin, YU Zhixiang, ZHANG Lijun, XU Hu, ZHAO Lei. Propagation Effect of Passive Flexible Protection System on Rockfall Impact[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 1085-1093. doi: 10.3969/j.issn.0258-2724.20180442
    [9]TANG Jianhui, WANG Yusuo, XIE Qiang, PAN Rundong, CHEN Cheng, GUO Xiaohan, LI Maoru, ZHOU Xiaojun. Experimentation on Stress Analysis of Arch-Shaped Open Tunnel Structure under Rockfall Impaction[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 39-47. doi: 10.3969/j.issn.0258-2724.20180429
    [10]WANG Yusuo, ZHOU Liang, LI Zhenghui, HE Junnan, WANG Tao. Mechanical Responses of Single-Pressure Arch-Shaped Open Tunnel Structure under Rockfall Impaction[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 505-515. doi: 10.3969/j.issn.0258-2724.2017.03.010
    [11]WANG Yusuo, XU Ming, WANG Tao, WANG Zhilong, HE Junnan, ZHOU Liang. Structural Reliability Design of Non-Backfilling Arch Open Tunnel Structure under Rock-fall Impaction[J]. Journal of Southwest Jiaotong University, 2017, 30(6): 1097-1103. doi: 10.3969/j.issn.0258-2724.2017.06.009
    [12]WANG Dongpo, LIU Yang, PEI Xiangjun, SHI Si. Elasto-Plastic Dynamic Responses of Reinforced Concrete Slabs under Rockfall Impact[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1147-1153. doi: 10.3969/j.issn.0258-2724.2016.06.014
    [13]GU Xiang, YU Zhixiang, ZHAO Lei, XU Hu. Influence of Rockfall Impact Energy on Mountain Bridge Damage[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1131-1137. doi: 10.3969/j.issn.0258-2724.2016.06.012
    [14]WANG Yusuo, LI Junjie, LI Zhenghui, FENG Gaofei, WU Hao, HE Junnan. Assessment of Rockfall Impact Force by Particle Flow Code Numerical Simulation Based on Discrete Element Model[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 22-29. doi: 10.3969/j.issn.0258-2724.2016.01.004
    [15]LIU Chengqing, CHEN Linya, CHEN Chi, LI Junjun, ZHAO Shichun. Application of Flexible Shed-Tunnel Structure to Rock-Fall Hazard Prevention[J]. Journal of Southwest Jiaotong University, 2015, 28(1): 110-117. doi: 10.3969/j.issn.0258-2724.2015.01.016
    [16]SUN Shulei, LI Fu, HUANG Yunhua, DING Junjun. Numerical Simulation of Railway Vehicle Impacts[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 507-512. doi: 10.3969/j.issn.0258-2724.2013.03.018
    [17]DONG Xiaomin, YU Miao, LIAO Changrong, CHEN Weimin. Adaptive Semiactive Bumper for Aircraft[J]. Journal of Southwest Jiaotong University, 2009, 22(5): 748-752.
    [18]WU Peng, YANG Ming. Missile Guidance Law with Terminal Impact Angle Constraint[J]. Journal of Southwest Jiaotong University, 2008, 21(3): 309-313.
    [19]RENZun-song, ZHAI Wan-ming, WANG Qi-chang. Simulation Calculation of Lateral Impact Force Acting on Guard Rail while Passing Through Turnout Zone on the Side-Way[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 344-347.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views(50) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return