• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
WANG Junjie, ZHANG Shuai. Large Deformation Control of Tunnel Surrounding Rock Based on Advance Stress Release and Grouting Reinforcement[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230706
Citation: WANG Junjie, ZHANG Shuai. Large Deformation Control of Tunnel Surrounding Rock Based on Advance Stress Release and Grouting Reinforcement[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230706

Large Deformation Control of Tunnel Surrounding Rock Based on Advance Stress Release and Grouting Reinforcement

doi: 10.3969/j.issn.0258-2724.20230706
  • Received Date: 25 Dec 2023
  • Rev Recd Date: 04 Apr 2024
  • Available Online: 10 Feb 2025
  • To address the limitations of using an advance guide tunnel for controlling large deformations of surrounding rock in soft rock tunnels, a deformation control method of “advance stress release + circumferential (lagging) grouting + lengthened anchor rod” was proposed after a thorough analysis of the large deformation characteristics of soft rocks and associated problems. Based on a unified model for the degradation of post-peak stiffness and strength of soft rocks and a unified strength criterion, the elastic-plastic solutions for the advance guide tunnel and main tunnel surrounding rock were obtained. Then, the constitutive model for the degradation of post-peak stiffness and strength of soft rocks was developed in FLAC3D finite difference software, and the deformation and stress distribution of the advance guide tunnel and main tunnel surrounding rock were obtained. Finally, the influencing factors such as softening modulus, grouting parameters, radius of advance guide tunnel, and distance between two tunnel faces were analyzed. The research results indicate that the advance guide tunnel can effectively release the surrounding rock deformations induced by compression, and the loosening and fracturing of the rock mass are the main reasons for excessive deformations and stability decrease of the release layer and main tunnel surrounding rock. Circumferential (lagging) grouting can effectively control the loosening deformations of the surrounding rock during excavation, improve the stress distribution of the surrounding rock, and enhance the load-bearing capacity of the surrounding rock. Larger values of the softening moduli Mc, Mφ, and ME indicate strong surrounding rock deformations of the advance guide tunnel. Larger values of grouting parameters cg, φg, and Eg indicate deformations of the main tunnel surrounding rock. Increasing the excavation radius r0 of the advance guide tunnel and increasing the distance between the two tunnel faces (advance guide tunnel and main tunnel) can make the initial ground stress release more sufficient.

     

  • [1]
    HE M C, SUI Q R, LI M N, et al. Compensation excavation method control for large deformation disaster of mountain soft rock tunnel[J]. International Journal of Mining Science and Technology, 2022, 32(5): 951-963. doi: 10.1016/j.ijmst.2022.08.004
    [2]
    康永水,耿志,刘泉声,等. 我国软岩大变形灾害控制技术与方法研究进展[J]. 岩土力学,2022,43(8): 2035-2059.

    KANG Yongshui, GENG Zhi, LIU Quansheng, et al. Research progress on support technology and methods for soft rock with large deformation hazards in China[J]. Rock and Soil Mechanics, 2022, 43(8): 2035-2059.
    [3]
    王志杰,周平,杨建民,等. 昔格达地层隧道围岩的失稳特征及变形控制工法[J]. 西南交通大学学报,2019,54(4): 757-768.

    WANG Zhijie, ZHOU Ping, YANG Jianmin, et al. Instability properties and deformation control methods of rocks surrounding xigeda strata[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 757-768.
    [4]
    DENG H S, FU H L, SHI Y, et al. Countermeasures against large deformation of deep-buried soft rock tunnels in areas with high geostress: a case study[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2022, 119: 104238.1-104238.19.
    [5]
    SUN X M, ZHANG B, ZHANG Y, et al. Field tests and research of large deformation control measures for soft rock tunnel with high geostress[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(4): 042006.1-042006.9.
    [6]
    李锦辉,张俊齐,魏强,等. 基于自感知纤维增强复合材料锚杆的隧道围岩松动圈识别[J]. 西南交通大学学报,2024,59(1): 11-19.

    LI Jinhui, ZHANG Junqi, WEI Qiang, et al. Loose zone identification for surrounding rock of tunnels using self-sensing fiber reinforced plastic anchors[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 11-19.
    [7]
    王明年,王志龙,桂登斌,等. 开挖方法影响下的深埋隧道形变压力计算方法[J]. 西南交通大学学报,2021,56(5): 1116-1124.

    WANG Mingnian, WANG Zhilong, GUI Dengbin, et al. Calculation method of deformation load of deep-buried tunnel under influence of excavation method[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1116-1124.
    [8]
    张梅,徐双永,张民庆,等. 高应力软岩隧道超前导洞法应力释放试验研究[J]. 现代隧道技术,2013,50(4): 68-75,83. doi: 10.3969/j.issn.1009-6582.2013.04.011

    ZHANG Mei, XU Shuangyong, ZHANG Qingmin, et al. Experimental study of stress release using a pilot heading for a highly stressed soft-rock tunnel[J]. Modern Tunnelling Technology, 2013, 50(4): 68-75,83. doi: 10.3969/j.issn.1009-6582.2013.04.011
    [9]
    夏才初,金天垚,徐晨,等. 软岩隧道超前导洞应力释放力学机制及适用性[J]. 隧道建设(中英文),2020,40(增2): 1-9.

    XIA Caicu, JIN Tianyao, Xuchen, et al. Mechanical mechanism and applicability of stress release for pilot heading in soft rock tunnel[J]. Tunnel Construction, 2020, 40(S2): 1-9.
    [10]
    刘国庆. 木寨岭隧道软岩大变形段支护措施研究[J]. 现代隧道技术,2011,48(4): 135-141,147.

    LIU Guoqing. Study of support measures for large deformed section of muzhailing tunnel in soft rocks[J]. Modern Tunnelling Technology, 2011, 48(4): 135-141,147.
    [11]
    周宗青,李术才,李利平,等. 导洞超前开挖施工性态空间效应分析[J]. 岩石力学与工程学报,2014,33(增1): 2611-2619.

    ZHOU Zongqing, LI Shucai, LI Liping, et al. Analysis of spatial effects of construction behavior on pilot tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2611-2619.
    [12]
    马伟斌,张梅,赵有明,等. 高地应力软岩隧道超前洞室断面优化模拟研究[J]. 铁道工程学报,2011,28(9): 58-62.

    MA Weibin, ZHANG Mei, ZHAO Youming, et al. Simulation study on the section optimization of the super pilot tunnel in high geo-stress tunnel[J]. Journal of Railway Engineering Society, 2011, 28(9): 58-62.
    [13]
    韩常领,夏才初,徐晨,等. 软岩隧道的超前导洞施工位置优化数值分析[J]. 地下空间与工程学报,2020,16(增1): 264-269,277.

    HAN Changling, XIA Caichu, XU Chen, et al. Numerical analysis on the optimization of the position of the pilot tunnel in soft rock[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S1): 264-269,277.
    [14]
    崔光耀,魏杭杭,王明胜. 高地应力强风化炭质板岩隧道大变形控制现场试验研究[J]. 现代隧道技术,2022,59(3): 183-189,200.

    CUI Guangyao, WEI Hanghang, WANG Mingsheng. A field test study on the large deformation control for tunnels built in seriously-weathered carbonaceous slate strata with high geostress[J]. Modern Tunnelling Technology, 2022, 59(3): 183-189,200.
    [15]
    王道远,刘佳,张逴,等. 高地应力深埋隧道断裂破碎带大变形控制方法现场试验研究[J]. 岩土工程学报,2020,42(4): 658-666.

    WANG Daoyuan, LIU Jia, ZHANG Chuo, et al. Field tests on large deformation control method for surrounding rock of deep tunnel in fault zone with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 658-666.
    [16]
    尤显明,李沿宗. 极高地应力软岩隧道超前导洞应力释放及多层支护变形控制技术[J]. 隧道建设,2017,37(7): 832-837. doi: 10.3973/j.issn.1672-741X.2017.07.008

    YOU Xianming, LI Yanzong. Stress releasing and deformation control technology of multilayer support for pilot heading of a soft rock tunnel with extremely high ground stress[J]. Tunnel Construction, 2017, 37(7): 832-837. doi: 10.3973/j.issn.1672-741X.2017.07.008
    [17]
    WU Y S, TAN Z S, LI S M. Experimental study on the basic characteristics of tunnel in squeezing surrounding rock with large deformation[J]. hina Civil Engineering Journal, 2015, 48:398-402.
    [18]
    郑可跃,施成华,雷明锋,等. 考虑松动效应的高地应力构造破碎带隧道稳定性分析及大变形支护设计优化[J]. 岩石力学与工程学报,2021,40(8): 1603-1613.

    ZHENG Keyue, SHI Chenghua, LEI Mingfeng, et al. Stability analysis and support design optimization of large-deformation tunnels in structural fracture zones with high in situ stresses considering loose effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1603-1613.
    [19]
    李峰. 高地应力构造破碎带隧道大变形灾变机制及控制技术研究[J]. 铁道科学与工程学报,2021,18(5): 1222-1230.

    LI Feng. Study on the formation mechanism and large deformation control of tunnel in structural fracture zone with high in-situ stress[J]. Journal Of Railway Science And Engineering, 2021, 18(5): 1222-1230.
    [20]
    张广泽,邓建辉,王栋,等. 隧道围岩构造软岩大变形发生机理及分级方法[J]. 工程科学与技术,2021,53(1): 1-12.

    ZHANG Guangze, DENG Jianhui, WANG Dong, et al. Mechanism and classification of tectonic-induced large deformation of soft rock tunnels[J]. Advanced Engineering Sciences, 2021, 53(1): 1-12.
    [21]
    PAN J L, GAO Z N, REN F H. Effect of strength criteria on surrounding rock of circular roadway considering strain softening and dilatancy[J]. Meitan Xuebao Journal of the China Coal Society, 2018, 43(12): 3293-3301.
    [22]
    CHEN L, MAO X B, LI M, et al. A new strain-softening constitutive model for circular opening considering plastic bearing behavior and its engineering application[J]. Mathematical Problems in Engineering, 2018, 2018: 4521492.1-4521492.13.
    [23]
    陆银龙,王连国,杨峰,等. 软弱岩石峰后应变软化力学特性研究[J]. 岩石力学与工程学报,2010,29(3): 640-648.

    LU Yinlong, WANG Lianguo, YANG Feng, et al. Post-peak strain softening mechanical properties of weak rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 640-648.
    [24]
    郑颖人,孔亮. 岩土塑性力学[M]. 2版. 北京:中国建筑工业出版社,2019:73-79.
    [25]
    徐芝纶. 弹性力学简明教程[M]. 北京:高等教育出版社,2013:70-72.
  • Relative Articles

    [1]LUO Xun, YANG Jie, TIAN Hongtao, LIU Dagang, WANG Xiaoyong. Characteristics and Calculation Method of Impact Load in Rockburst Tunnel[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1095-1103. doi: 10.3969/j.issn.0258-2724.20220373
    [2]QIN Pengfei, ZHONG Hongwei, LIU Jian, SU Danna, SUN Zhuoyu. Analysis of Split Grouting Mechanism Considering Coupling Effect of Slurry and Soil Stress[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 584-591. doi: 10.3969/j.issn.0258-2724.20220433
    [3]LI Tiansheng, HE Chuan, FANG Yanbing, ZHOU Zihan, BAO Yeming, CHEN Ziquan, BAI Guofeng. Reliability-Based Design Method of Tunnel Structures Based on Deformation Failure of Surrounding Rock[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 613-621. doi: 10.3969/j.issn.0258-2724.20220137
    [4]WANG Zhijie, ZHOU Ping, YANG Jianmin, CAO Xiaochuan, ZHAO Qichao, XU Haiyan, XU Ruining. Instability Properties and Deformation Control Methods of Rocks Surrounding Xigeda Strata[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 757-768. doi: 10.3969/j.issn.0258-2724.20170257
    [5]LI Xi, JIA Hongyu, LI Qian, KANG Rui, CHEN Zhiwei. Effect of Pounding on Elastic-Plastic Dynamic Response of High Pier Bridge in Mountainous Area[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 109-118. doi: 10.3969/j.issn.0258-2724.2018.01.014
    [6]CHEN Ziquan, HE Chuan, WU Di, DAI Cong, YANG Wenbo, XU Guowen. Study of Large Deformation Classification Criterion for Layered Soft Rock Tunnels under High Geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020
    [7]YU Fucai, ZHANG Dingli, FANG Qian, SUN Zhenyu, TAI Qimin, ZHAO Jiangtao. Three-Dimensional Analysis Model of Surrounding Rock Deformation and Support Stiffness for Tunnel Construction[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 738-745,763. doi: 10.3969/j.issn.0258-2724.2017.04.012
    [8]GUO Jun, WEN Zefeng, JIN Xuesong, LIU Qiyue. Three-Dimensional Elastic-Plastic Rolling Contact Stresses in Rail[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 262-268.
    [9]SHE Jian, HE Chuan. 3D Elasto-plastic Numerical Simulation of Entire Construction Process for H ighway Tunnel[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 298-302.
    [10]ZHANGXin-pei, GE Yan, CHENShi-chao. Sensitivity Analysis of Elastoplastic Time-History Reliability of Story-Drift Capacity of Aseismatic RC Frames[J]. Journal of Southwest Jiaotong University, 2004, 17(1): 6-9.
    [11]XIE Qiang, CHEN Yong-ping. Analysis of Earth Temperature Field Character and Prediction of Rock Temperature at Qinling Railway Tunnel[J]. Journal of Southwest Jiaotong University, 2002, 15(2): 177-179.
    [12]ZUO De-yuan, ZHENGAn-qi. An Elastic-Plastic Finite Element Analysis on Tunnel Structures at Cycled Temperatures[J]. Journal of Southwest Jiaotong University, 2001, 14(2): 172-175.
    [13]YANG Ming-ju, GUAN Bao-shu, WANG Min-shou. Sensitivity Analysis of the Influences of Rock Parameters on the Stability of Large-Scale Underground Chambers[J]. Journal of Southwest Jiaotong University, 2000, 13(5): 488-491.
    [14]YANGMing-ju, CHANG Shao-dong. The Excavation Procedure of Super-Large Underground Chambers and the Surrounding Rock Stability[J]. Journal of Southwest Jiaotong University, 2000, 13(1): 32-35.
    [15]LUHui, SUNGuo-ying. Analysis of Three Dimensional Elastic-Plastic Stresses of Rail under Non-Ellipse Contact Area[J]. Journal of Southwest Jiaotong University, 2000, 13(4): 340-343.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-092024-102024-112024-122025-012025-022025-032025-032025-042025-052025-062025-07051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.4 %FULLTEXT: 30.4 %META: 60.2 %META: 60.2 %PDF: 9.4 %PDF: 9.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.3 %其他: 17.3 %其他: 2.1 %其他: 2.1 %San Lorenzo: 0.5 %San Lorenzo: 0.5 %东莞: 0.5 %东莞: 0.5 %北京: 9.9 %北京: 9.9 %南京: 1.6 %南京: 1.6 %南阳: 0.5 %南阳: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %哥伦布: 0.5 %哥伦布: 0.5 %天津: 3.1 %天津: 3.1 %太原: 2.6 %太原: 2.6 %宣城: 1.6 %宣城: 1.6 %山景城: 2.1 %山景城: 2.1 %张家口: 2.6 %张家口: 2.6 %成都: 1.6 %成都: 1.6 %扬州: 2.1 %扬州: 2.1 %昆明: 0.5 %昆明: 0.5 %杭州: 0.5 %杭州: 0.5 %池州: 2.1 %池州: 2.1 %淄博: 1.0 %淄博: 1.0 %深圳: 0.5 %深圳: 0.5 %温州: 1.0 %温州: 1.0 %漯河: 2.6 %漯河: 2.6 %石家庄: 5.8 %石家庄: 5.8 %芒廷维尤: 8.9 %芒廷维尤: 8.9 %襄阳: 1.0 %襄阳: 1.0 %西宁: 15.7 %西宁: 15.7 %贵阳: 1.0 %贵阳: 1.0 %运城: 1.0 %运城: 1.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %重庆: 3.7 %重庆: 3.7 %长沙: 2.6 %长沙: 2.6 %香港: 0.5 %香港: 0.5 %马鞍山: 1.0 %马鞍山: 1.0 %其他其他San Lorenzo东莞北京南京南阳呼和浩特哥伦布天津太原宣城山景城张家口成都扬州昆明杭州池州淄博深圳温州漯河石家庄芒廷维尤襄阳西宁贵阳运城遵义邯郸重庆长沙香港马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(114) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return