• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 61 Issue 1
Feb.  2026
Turn off MathJax
Article Contents
YANG Liu, YIN Huiying, MA Zheng, LIU Heng, WANG Shiheng. Degree Optimization of Batched Sparse Codes Using Outer Code Block Encoding[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 160-170. doi: 10.3969/j.issn.0258-2724.20230670
Citation: YANG Liu, YIN Huiying, MA Zheng, LIU Heng, WANG Shiheng. Degree Optimization of Batched Sparse Codes Using Outer Code Block Encoding[J]. Journal of Southwest Jiaotong University, 2026, 61(1): 160-170. doi: 10.3969/j.issn.0258-2724.20230670

Degree Optimization of Batched Sparse Codes Using Outer Code Block Encoding

doi: 10.3969/j.issn.0258-2724.20230670
  • Received Date: 10 Dec 2023
  • Rev Recd Date: 22 Jul 2025
  • Available Online: 17 Sep 2025
  • Publish Date: 14 Aug 2025
  • To address the issues of repeated decoding and resource waste caused by random batch generation of the outer code in existing outer code block coding schemes for batched sparse (BATS) codes, the optimization of theoretical batch count and dynamic adaptability of BATS codes was systematically investigated based on the outer code block encoding scheme. First, under the condition of a known packet loss rate, a batch consumption analysis model for BATS codes was established, and an optimal degree value computation method was derived to tackle the challenges in existing schemes regarding theoretical batch count calculation and optimal degree value determination for minimizing batch count consumption. Second, for scenarios with unknown packet loss rates in the channel, a reinforcement learning-based dynamic degree optimization method for BATS codes was proposed, enabling real-time acquisition of degree values through an intelligent learning mechanism. Finally, simulation experiments were conducted to evaluate the theoretical model and the proposed dynamic optimization method. Simulation results have shown that the established transmission model based on outer code blocks and its batch count computation formula can be used to calculate batch consumption and determine the optimal degree distribution. Simulation results demonstrate that the proposed reinforcement learning-based optimization scheme achieves lower average batch count consumption than fixed-degree value schemes with unknown packet loss rates and maintains great performance in dynamic channel environments.

     

  • loading
  • [1]
    CHOU P A, WU Y, JAIN K. Practical network coding[C]//Proceeding of the 41th Annual Allerton Conference on Communications, Controls and Computations. Monticello: IEEE, 2003: 1-10.
    [2]
    HO T, KOETTER R, MEDARD M, et al. The benefits of coding over routing in a randomized setting[C]//IEEE International Symposium on Information Theory. Yokohama: IEEE, 2003: 442.
    [3]
    JAGGI S, CASSUTO Y, EFFROS M. Low complexity encoding for network codes[C]//2006 IEEE International Symposium on Information Theory. Seattle: IEEE, 2006: 40-44.
    [4]
    SANDERS P, EGNER S, TOLHUIZEN L. Polynomial time algorithms for network information flow[C]// Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures. San Dieg: ACM, 2003: 286-294.
    [5]
    XU X L, ZENG Y, GUAN Y L, et al. Expanding-window BATS code for scalable video multicasting over erasure networks[J]. IEEE Transactions on Multimedia, 2018, 20(2): 271-281. doi: 10.1109/TMM.2017.2742699
    [6]
    YANG J, SHI Z P, WANG C X, et al. Design of optimized sliding-window BATS codes[J]. IEEE Communications Letters, 2019, 23(3): 410-413. doi: 10.1109/LCOMM.2019.2895867
    [7]
    WANG S H, LIU H, MA Z, et al. Precoded batched sparse codes transmission based on low-density parity-check codes[C]//2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). Helsinki: IEEE, 2022: 9860907.1-9860907.5.
    [8]
    WANG S H, LIU H, MA Z, et al. Chunked BATS codes under time-invariant and time-variant channels[C]//2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring). Helsinki: IEEE, 2022: 9860749.1- 9860749.5.
    [9]
    LUBY M G, MITZENMACHER M , SHOKROLLAHI M A. Analysis of random processes via AND/OR tree evaluations[C]//ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics. San Francisco: [s.n.], 1998: 364-373.
    [10]
    LUBY M. LT codes[C]//The 43rd Annual IEEE Symposium on Foundations of Computer Science. Vancouver: IEEE, 2002: 271-280.
    [11]
    YANG S H, YEUNG R W. BATS codes: theory and practice[M]. [S.l.]: Morgan & Claypool Publishers, 2017.
    [12]
    XU X L, GUAN Y L, ZENG Y, et al. Quasi-universal BATS code[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3497-3501. doi: 10.1109/TVT.2016.2594051
    [13]
    YANG S H, YEUNG R W. Batched sparse codes[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5322-5346. doi: 10.1109/TIT.2014.2334315
    [14]
    沈宇桐, 徐勇. 概率布尔网络的牵制鲁棒镇定[J]. 系统科学与数学, 2022, 42(6): 1454-1466.

    SHEN Yutong, XU Yong . Pinning robust stabilization of probabilistic boolean networks [J]. Journal of Systems Science and Mathematical Sciences , 2022, 42(6): 1454-1466.
    [15]
    DIMAKIS A G, GODFREY P B, WU Y, et al. Network coding for distributed storage systems[C]//The 26th IEEE International Conference on Computer Communications. Anchorage: IEEE, 2007: 2000-2008.
    [16]
    CHACHULSKI S, JENNINGS M, KATTI S, et al. Trading structure for randomness in wireless opportunistic routing[J]. ACM SIGCOMM Computer Communication Review, 2007, 37(4): 169-180. doi: 10.1145/1282427.1282400
    [17]
    WANG M A, LI B C. Network coding in live peer-to-peer streaming[J]. IEEE Transactions on Multimedia, 2007, 9(8): 1554-1567. doi: 10.1109/TMM.2007.907460
    [18]
    KATTI S, RAHUL H, HU W J, et al. XORs in the air: practical wireless network coding[J]. IEEE/ACM Transactions on Networking, 2008, 16(3): 497-510. doi: 10.1109/TNET.2008.923722
    [19]
    李聪. 考虑负载均衡的物联网节点传输速率控制方法[J]. 物联网技术, 2024, 14(7): 71-73.
    [20]
    DUFFY D G. Advanced engineering mathematics[M]. New York: CRC Press, Inc. , 2022.
    [21]
    WATKINS C J C H. Learning from delayed rewards [D]. Cambridge: University of Cambridge, 1989.
    [22]
    胡晶晶, 黄有方. 两个轴辐式网络协同建设的多层编码遗传算法[J]. 西南交通大学学报, 2020, 55(5): 971-979.

    HU Jingjing, HUANG Youfang. Multi-layer coded genetic algorithm with collaborative construction of two hub-and-spoke networks[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 971-979.
    [23]
    周敬轩, 包卫东, 王吉, 等. 基于编-解码器结构的无人机群多任务联邦学习[J]. 西南交通大学学报, 2024, 59(4): 933-941.

    ZHOU Jingxuan, BAO Weidong, WANG Ji, et al. Multi-task federated learning for unmanned aerial vehicle swarms based on encoder-decoder architecture[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 933-941.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article views(81) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return