Citation: | JIANG Yuan, LIU Jinyang, HUI Yi, LIU Rui. Impact of Horizontal Ribs on Aerodynamic Characteristics of High-Rise Buildings[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230584 |
To analyze the wind-resistance working mechanism of stretched ribs mounted on high-rise buildings, the impact of horizontal ribs on the flow field and wind load of high-rise buildings under atmospheric boundary layer flow was evaluated by using the large eddy simulation (LES), and the wind-resistance effect of different types of horizontal ribs was compared. The results show that the horizontal ribs significantly inhibit the formation of the separated vortex near the sidewall and elongate the wake vortex. The ribs obviously suppress the vertical flow near the buildings and induce a local vortex near the ribs, which eventually causes significant changes in the pattern of near-wall flow. The changes in the flow field will lead to corresponding alterations in wind pressure distribution and wind load. The horizontal ribs can cause a “zigzag” pattern distribution of the mean wind pressure coefficient along the altitude of the buildings, and the ribs significantly reduce the mean and fluctuating wind pressure on the sidewall. The maximum reductions are about 20% and 17%, respectively. With regard to total wind load, the horizontal ribs have negligible impact on the mean drag, while they can significantly mitigate the fluctuating lift on the buildings, with a maximum reduction of 27%. The effect of the rib arrangement on the aerodynamic characteristics is also significantly different. The continuous horizontal ribs affects the wind pressure distribution and wind load by changing the near-wall flow and the vortex structure, while the influence of discontinuous ribs on wind load is relatively weak.
[1] |
张正维,全涌,顾明,等. 锥度化方形截面高层建筑的气动力特性[J]. 西南交通大学学报,2014,49(5): 772-778. doi: 10.3969/j.issn.0258-2724.2014.05.005
ZHANG Zhengwei, QUAN Yong, GU Ming, et al. Aerodynamic characteristics of tapered tall buildings with square section[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 772-778. doi: 10.3969/j.issn.0258-2724.2014.05.005
|
[2] |
曾加东,李明水. 矩形断面高层建筑脉动风荷载频谱特性研究[J]. 西南交通大学学报,2017,52(1): 83-90. doi: 10.3969/j.issn.0258-2724.2017.01.012
ZENG Jiadong, LI Mingshui. Experimental study of spectral characteristics of fluctuating wind loads on high-rise building with rectangular section[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 83-90. doi: 10.3969/j.issn.0258-2724.2017.01.012
|
[3] |
黄东梅,何世青,朱学,等. 表面粗糙度对超高层建筑风荷载与风振响应的影响[J]. 湖南大学学报(自然科学版),2017,44(9): 41-51.
HUANG Dongmei, HE Shiqing, ZHU Xue, et al. Influence of surface roughness on wind load and wind-induced response of super-tall building[J]. Journal of Hunan University (Natural Sciences), 2017, 44(9): 41-51.
|
[4] |
MARUTA E, KANDA M, SATO J. Effects on surface roughness for wind pressure on glass and cladding of buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74/75/76: 651-663.
|
[5] |
CHAND I, BHARGAVA P K, KRISHAK N L V. Effect of balconies on ventilation inducing aeromotive force on low-rise buildings[J]. Building and Environment, 1998, 33(6): 385-396. doi: 10.1016/S0360-1323(97)00054-1
|
[6] |
ZHENG X, MONTAZERI H, BLOCKEN B. CFD analysis of the impact of geometrical characteristics of building balconies on near-façade wind flow and surface pressure[J]. Building and Environment, 2021, 200: 107904.1-107904.19.
|
[7] |
MONTAZERI H, BLOCKEN B. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis[J]. Building and Environment, 2013, 60: 137-149. doi: 10.1016/j.buildenv.2012.11.012
|
[8] |
YUAN K, HUI Y, CHEN Z Q. Effects of facade appurtenances on the local pressure of high-rise building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 26-37. doi: 10.1016/j.jweia.2018.05.004
|
[9] |
HUI Y, YUAN K, CHEN Z Q, et al. Characteristics of aerodynamic forces on high-rise buildings with various façade appurtenances[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 76-90. doi: 10.1016/j.jweia.2019.06.002
|
[10] |
CHENG X, HUANG G Q, YANG Q S, et al. Influence of architectural facades on wind pressures and aerodynamic forces of tall buildings[J]. Journal of Structural Engineering, 2021, 147(1): 04020303.1-04020303.14
|
[11] |
YANG Q S, LIU Z H, HUI Y, et al. Modification of aerodynamic force characteristics on high-rise buildings with arrangement of vertical plates[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 200: 104155.1-104155.18.
|
[12] |
AI Z T, MAK C M, NIU J L. Numerical investigation of wind-induced airflow and interunit dispersion characteristics in multistory residential buildings[J]. Indoor Air, 2013, 23(5): 417-429. doi: 10.1111/ina.12041
|
[13] |
ZHENG X, MONTAZERI H, BLOCKEN B. CFD simulations of wind flow and mean surface pressure for buildings with balconies: comparison of RANS and LES[J]. Building and Environment, 2020, 173: 106747.1-106747.17.
|
[14] |
KUMAR A, RAHUL P S, KUMAR S. Performance optimization of tall buildings subjected to wind—an Indian scenario[C]//Proceedings of the Eighth Asia-Pacific Conference on Wind Engineering. Singapore: Research Publishing Services, 2013: 817-826.
|
[15] |
LIU J Y, HUI Y, YANG Q S, et al. Flow field investigation for aerodynamic effects of surface mounted ribs on square-sectioned high-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104551.1-104551.9.
|
[16] |
LIU J Y, HUI Y, WANG J X, et al. LES study of windward-face-mounted-ribs’ effects on flow fields and aerodynamic forces on a square cylinder[J]. Building and Environment, 2021, 200: 107950.1-107950.14.
|
[17] |
LIU J Y, HUI Y, LI S K, et al. Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs[J]. Computers & Fluids, 2022, 245: 105609.1-105609.13.
|
[18] |
HUI Y, LIU J Y, WANG J X, et al. Effects of facade rib arrangement on aerodynamic characteristics and flow structure of a square cylinder[J]. Building and Environment, 2022, 214: 108924.1-108924.13.
|
[19] |
LAM K, LIN Y F. Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1071-1088. doi: 10.1016/j.ijheatfluidflow.2008.01.006
|
[20] |
YANG Q S, ZHOU T, YAN B W, et al. LES study of turbulent flow fields over hilly terrains—comparisons of inflow turbulence generation methods and SGS models[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104230.1-104230.22.
|
[21] |
ABOSHOSHA H, ELSHAER A, BITSUAMLAK G T, et al. Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 198-216. doi: 10.1016/j.jweia.2015.04.004
|
[22] |
MARUYAMA Y, TAMURA T, OKUDA Y, et al. LES of fluctuating wind pressure on a 3D square cylinder for PIV-based inflow turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 122: 130-137. doi: 10.1016/j.jweia.2013.07.001
|
[23] |
CAO Y, TAMURA T, KAWAI H. Investigation of wall pressures and surface flow patterns on a wall-mounted square cylinder using very high-resolution Cartesian mesh[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 1-18. doi: 10.1016/j.jweia.2019.02.013
|
[24] |
SAKAMOTO H, OIWAKE S. Fluctuating forces on a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer[J]. Journal of Fluids Engineering, 1984, 106(2): 160-166. doi: 10.1115/1.3243093
|
[25] |
MCCLEAN J F, SUMNER D. An experimental investigation of aspect ratio and incidence angle effects for the flow around surface-mounted finite-height square prisms[J]. Journal of Fluids Engineering, 2014, 136(8): 081206.1-081206.10.
|