• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
ZHU Qing, ZHAO Yuanzhen, GUO Yongxin, DING Yulin, WANG Qiang, PAN Yan, CHEN Junhua, ZHANG Liguo. Distributed Management Method for Geographic and Geological Knowledge Base for Railway Digital Twin[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230389
Citation: ZHU Qing, ZHAO Yuanzhen, GUO Yongxin, DING Yulin, WANG Qiang, PAN Yan, CHEN Junhua, ZHANG Liguo. Distributed Management Method for Geographic and Geological Knowledge Base for Railway Digital Twin[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230389

Distributed Management Method for Geographic and Geological Knowledge Base for Railway Digital Twin

doi: 10.3969/j.issn.0258-2724.20230389
  • Received Date: 24 Aug 2023
  • Rev Recd Date: 15 Nov 2023
  • Available Online: 21 Feb 2025
  • Efficient geographic and geological knowledge services for railway engineering form a crucial foundation for supporting the multi-scale and multi-disciplinary intelligent applications of digital twin technology in railways. To improve the completeness of query results and enhance the capability for integrated analysis across the multi-scale “region–engineering project–construction site” applications of railway digital twins, a meta-network model for the dynamic distribution of geographic and geological knowledge was proposed. This model was designed as a distributed knowledge base network system, with railway agents, business departments, knowledge relationships, and multi-scale application scenarios as key nodes. A meta-network disruption algorithm for distribution optimization was implemented, with node importance assessed using degree centrality indicators. By analyzing the distribution influence through network perturbation, the influence range of nodes was calculated, obtaining the optimized distribution structure of the knowledge base. To validate this approach, it was applied to optimize the distribution of the knowledge base within the knowledge base management and application scenario for railway digital twins of a major railway bridge project. Experimental results show that, when processing knowledge retrieval tasks at the engineering and regional scales, the distribution optimization method increases the number of query results with reduced retrieval time and enhanced result matching accuracy.

     

  • [1]
    朱庆,朱军,黄华平,等. 实景三维空间信息平台与数字孪生川藏铁路[J]. 高速铁路技术,2020,11(2): 46-53.

    ZHU Qing, ZHU Jun, HUANG Huaping, et al. Real 3D spatial information platform and digital twin Sichuan—Tibet railway[J]. High Speed Railway Technology, 2020, 11(2): 46-53.
    [2]
    王同军. 智能高速铁路基础设施全生命周期管理框架研究[J]. 铁道学报,2021,43(11): 1-7.

    WANG Tongjun. Research on life-cycle management framework of intelligent high-speed railway infrasturcture[J]. Journal of the China Railway Society, 2021, 43(11): 1-7.
    [3]
    王同军. 智能铁路总体架构与发展展望[J]. 铁路计算机应用,2018,27(7): 1-8. doi: 10.3969/j.issn.1005-8451.2018.07.003

    WANG Tongjun. Overall framework and development prospect of intelligent railway[J]. Railway Computer Application, 2018, 27(7): 1-8. doi: 10.3969/j.issn.1005-8451.2018.07.003
    [4]
    朱庆,张利国,丁雨淋,等. 从实景三维建模到数字孪生建模[J]. 测绘学报,2022,51(6): 1040-1049. doi: 10.11947/j.issn.1001-1595.2022.6.chxb202206024

    ZHU Qing, ZHANG Liguo, DING Yulin, et al. From real 3D modeling to digital twin modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1040-1049. doi: 10.11947/j.issn.1001-1595.2022.6.chxb202206024
    [5]
    林珲,朱庆,陈旻. 有无相生 虚实互济:虚拟地理环境研究20周年综述[J]. 测绘学报,2018,47(8): 1027-1030. doi: 10.11947/j.AGCS.2018.20180202

    LIN Hui, ZHU Qing, CHEN Min. The being and non-being generate each other, and the virtual and the real are mutually interactive: the progress of virtual geographic environments (VGE) studies in last 20 years[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8): 1027-1030. doi: 10.11947/j.AGCS.2018.20180202
    [6]
    朱庆. 三维GIS及其在智慧城市中的应用[J]. 地球信息科学学报,2014,16(2): 151-157.

    ZHU Qing. Full three-dimensional GIS and its key roles in smart city[J]. Journal of Geo-Information Science, 2014, 16(2): 151-157.
    [7]
    LI H K, ZHU Q, ZHANG L G, et al. Integrated representation of geospatial data, model, and knowledge for digital twin railway[J]. International Journal of Digital Earth, 2022, 15(1): 1657-1675. doi: 10.1080/17538947.2022.2127949
    [8]
    朱庆,李函侃,曾浩炜,等. 面向数字孪生川藏铁路的实体要素分类与编码研究[J]. 武汉大学学报(信息科学版),2020,45(9): 1319-1327.

    ZHU Qing, LI Hankan, ZENG Haowei, et al. Classification and coding of entity features for digital twin Sichuan—Tibet railway[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1319-1327.
    [9]
    王鑫,陈蔚雪,杨雅君,等. 知识图谱划分算法研究综述[J]. 计算机学报,2021,44(1): 235-260.

    WANG Xin, CHEN Weixue, YANG Yajun, et al. Research on knowledge graph partitioning algorithms: a survey[J]. Chinese Journal of Computers, 2021, 44(1): 235-260.
    [10]
    朱庆,王所智,丁雨淋,等. 铁路隧道钻爆法施工智能管理的安全质量进度知识图谱构建方法[J]. 武汉大学学报(信息科学版),2022,47(8): 1155-1164.

    ZHU Qing, WANG Suozhi, DING Yulin, et al. A method of safety-quality-schedule knowledge graph for intelligent management of drilling and blasting construction of railway tunnels[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1155-1164.
    [11]
    朱庆,苗双喜,丁雨淋,等. 知识引导的滑坡监测数据粗差定位与剔除方法[J]. 武汉大学学报(信息科学版),2017,42(4): 496-502.

    ZHU Qing, MIAO Shuangxi, DING Yulin, et al. Knowledge-guided gross errors detection and elimination approach of landslide monitoring data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502.
    [12]
    杜志强,李钰,张叶廷,等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报(信息科学版),2020,45(9): 1344-1355.

    DU Zhiqiang, LI Yu, ZHANG Yeting, et al. Knowledge graph construction method on natural disaster emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355.
    [13]
    朱庆,曾浩炜,丁雨淋,等. 重大滑坡隐患分析方法综述[J]. 测绘学报,2019,48(12): 1551-1561.

    ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561.
    [14]
    张雪英,张春菊,吴明光,等. 顾及时空特征的地理知识图谱构建方法[J]. 中国科学:信息科学,2020,50(7): 1019-1032. doi: 10.1360/SSI-2019-0269

    ZHANG Xueying, ZHANG Chunju, WU Mingguang, et al. Spatiotemporal features based geographical knowledge graph construction[J]. Scientia Sinica (Informationis), 2020, 50(7): 1019-1032. doi: 10.1360/SSI-2019-0269
    [15]
    张利国,丁雨淋,朱庆,等. 铁路地理地质数据“本体域-变化域-状态域” 三域关联的集成表达模型[J]. 武汉大学学报(信息科学版),2024,49(6): 1018-1027.

    ZHANG Liguo, DING Yulin, ZHU Qing, et al. A holistic multi-domain association model for railway geographic and geologic data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 1018-1027.
    [16]
    CARLEY K M, LEE J S, KRACKHARDT D. Destabilizing networks[J]. Connections, 2002, 24(3): 79-92.
    [17]
    FAN C, ZHANG C, YAHJA A, et al. Disaster City Digital Twin: a vision for integrating artificial and human intelligence for disaster management[J]. International Journal of Information Management, 2021, 56: 102049.1-102049.7.
    [18]
    LI Q C, DONG S J, MOSTAFAVI A. Metanetwork framework for analysis of actor-plan-task-infrastructure networks in resilience planning and management[J]. Natural Hazards Review, 2020, 21(2): 04020016.1-04020016.6.
    [19]
    LIU M, CHONG H Y, LIAO P C, et al. Risk-based metanetwork modeling for sustainable project performance in international construction[J]. Journal of Infrastructure Systems, 2021, 27(3): 04021020.1-0402102.7.
    [20]
    LIU S M, LU Y Q, LI J, et al. Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102-123.
    [21]
    GUO Y X, ZHU Q, DING Y L, et al. Efficient distributed association management method of data, model, and knowledge for digital twin railway[J]. International Journal of Digital Earth, 2024, 17(1): 536-545.
    [22]
    ZHOU B, BAO J S, LI J, et al. A novel knowledge graph-based optimization approach for resource allocation in discrete manufacturing workshops[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 608-617.
    [23]
    ZHANG H, QI Q L, TAO F. A multi-scale modeling method for digital twin shop-floor[J]. Journal of Manufacturing Systems, 2022, 62: 417-428. doi: 10.1016/j.jmsy.2021.12.011
    [24]
    SHAO T Y, LI X Y, ZHAO X, et al. DSKRL: a dissimilarity-support-aware knowledge representation learning framework on noisy knowledge graph[J]. Neurocomputing, 2021, 461: 608-617. doi: 10.1016/j.neucom.2021.02.099
    [25]
    MAZAHERI SOUDANI N, FATEMI A, NEMATBAKHSH M. An investigation of big graph partitioning methods for distribution of graphs in vertex-centric systems[J]. Distributed and Parallel Databases, 2020, 38(1): 1-29. doi: 10.1007/s10619-019-07256-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(69) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return