• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
PAN Qinfeng, ZHANG Bingqiang, HUANG Zhibin. Analytical Study for Uncoordinated Deformation of Existing Pipeline and Soil Induced by Tunnel Undercrossing[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 637-645. doi: 10.3969/j.issn.0258-2724.20230334
Citation: PAN Qinfeng, ZHANG Bingqiang, HUANG Zhibin. Analytical Study for Uncoordinated Deformation of Existing Pipeline and Soil Induced by Tunnel Undercrossing[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 637-645. doi: 10.3969/j.issn.0258-2724.20230334

Analytical Study for Uncoordinated Deformation of Existing Pipeline and Soil Induced by Tunnel Undercrossing

doi: 10.3969/j.issn.0258-2724.20230334
  • Received Date: 08 Jul 2023
  • Rev Recd Date: 19 Sep 2023
  • Available Online: 14 Dec 2023
  • Publish Date: 28 Sep 2023
  • To analyze the effect of a void under the existing pipeline on its deflection response during tunnel undercrossing construction, a theoretical model and an analytical solution of the uncoordinated deformation of the existing pipeline and soil induced by tunnel undercrossing construction were presented. Firstly, the existing pipeline was regarded as an Euler beam on a tensionless Pasternak foundation. According to the contacting condition of the pipeline and soil, the equations for the uncoordinated deformation control of the pipeline and soil caused by the tunnel undercrossing construction were established, and the corresponding formulas for the pipeline deflection were derived. Secondly, the influence of the parameters on the length of the void under the existing pipeline was discussed by using the proposed theoretical method, including the vertical soil pressure acting above the void, the flexural stiffness, and the width and maximum value of the formation settlement trough at the position where the existing pipeline located. Finally, a normalized empirical formula was proposed for calculating the length of the void under the existing pipeline induced by tunnel undercrossing construction, further simplifying the calculation method of existing pipeline deflection induced by the undercrossing construction of new tunnels. The research results show that the length of the void under the existing pipeline has a good correlation with the two normalized parameters (the ratio of the stiffness of the existing pipeline to the foundation, as well as the ratio of the vertical soil pressure acting above the void of the existing pipeline to the maximum value of the formation settlement trough), and the correlation coefficient between the calculated value of the fitting formula and the theoretical data is close to 1.

     

  • loading
  • [1]
    傅鹤林,于归,邓皇适,等. 类矩形盾构隧道上穿施工引起既有管道剪切错台变形研究[J]. 中南大学学报(自然科学版),2022,53(10): 3923-3935.

    FU Helin, YU Gui, DENG Huangshi, et al. Research on shear dislocation deformation of existing tunnel caused by construction of above-passing quasi-rectangular shield tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3923-3935.
    [2]
    倪准林,王树英,黄硕,等. 富水圆砾地层斜向并行隧道上部盾构掘进对下部管片力学状态的影响[J]. 中南大学学报(自然科学版),2022,53(8): 2996-3007.

    NI Zhunlin, WANG Shuing, HUANG Shuo, et al. Influence of the upper shield tunnel excavation on mechanical state of lower segment in water-rich rounded gravel stratum[J]. Journal of Central South University (Science and Technology), 2022, 53(8): 2996-3007.
    [3]
    LIU X, FANG Q, ZHANG D L. Mechanical responses of existing tunnel due to new tunnelling below without clearance[J]. Tunnelling and Underground Space Technology, 2018, 80: 44-52. doi: 10.1016/j.tust.2018.06.001
    [4]
    LIU X, FANG Q, ZHANG D L, et al. Behaviour of existing tunnel due to new tunnel construction below[J]. Computers and Geotechnics, 2019, 110: 71-81. doi: 10.1016/j.compgeo.2019.02.013
    [5]
    CHEN R P, LIN X T, KANG X, et al. Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing[J]. Tunnelling and Underground Space Technology, 2018, 82(12): 468-481.
    [6]
    LAI H P, ZHENG H W, CHEN R, et al. Settlement behaviors of existing tunnel caused by obliquely under-crossing shield tunneling in close proximity with small intersection angle[J]. Tunnelling and Underground Space Technology, 2020, 97: 103258.1-103258.12.
    [7]
    JIN D L, YUAN D J, LI X G, et al. Analysis of the settlement of an existing tunnel induced by shield tunneling underneath[J]. Tunnelling and Underground Space Technology, 2018, 81: 209-220. doi: 10.1016/j.tust.2018.06.035
    [8]
    章慧健,牛晓宇,刘功宁,等. 既有地铁列车振动荷载下密贴下穿通道的动力响应特性研究[J]. 岩石力学与工程学报,2023,42(5): 1273-1286.

    ZHANG Huijian, NIU Xiaoyu, LIU Gongning, et al. Research on the dynamic response of the closely-attached underpass induced by the trains’vibrating load of metro[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1273-1286.
    [9]
    ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London: Blackie and Son Ltd., 1986.
    [10]
    KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and Elastic Continuum Solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [11]
    YU J, ZHANG C R, HUANG M S. Soil-pipe interaction due to tunnelling: assessment of Winkler modulus for underground pipelines[J]. Computer and Geotechnics, 2013, 50(5): 17-28.
    [12]
    张桓,张子新. 盾构隧道开挖引起既有管线的竖向变形[J]. 同济大学学报(自然科学版),2013,41(8): 1172-1178.

    ZHANG Huan, ZHANG Zixin. Vertical deflection of existing pipeline due to shield tunnelling[J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1172-1178.
    [13]
    张冬梅,宗翔,黄宏伟. 盾构隧道掘进引起上方已建隧道的纵向变形研究[J]. 岩土力学,2014,35(9): 2659-2666.

    ZHANG Dongmei, ZONG Xiang, HUANG Hongwei. Longitudinal deformation of existing tunnel due to underlying shield tunneling[J]. Rock and Soil Mechanics, 2014, 35(9): 2659-2666.
    [14]
    梁荣柱,宗梦繁,康成,等. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版),2018,52(3): 420-430,472.

    LIANG Rongzhu, ZONG Mengfan, KANG Cheng, et al. Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(3): 420-430,472.
    [15]
    MARSHALL A M, KLAR A, MAIR R J. Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1664-1672. doi: 10.1061/(ASCE)GT.1943-5606.0000390
    [16]
    LIN C G, HUANG M S, NADIM F, et al. Tunnelling-induced response of buried pipelines and their effects on ground settlements[J]. Tunnelling and Underground Space Technology, 2020, 96(2): 103193.1-103193.17.
    [17]
    MA S K, SHAO Y, LIU Y, et al. Responses of pipeline to side-by-side twin tunnelling at different depths: 3D centrifuge tests and numerical modelling[J]. Tunnelling and Underground Space Technology, 2017, 66: 157-173. doi: 10.1016/j.tust.2017.04.006
    [18]
    吴为义. 盾构隧道周围地下管线的性状研究[D]. 杭州: 浙江大学, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views(264) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return