Citation: | LI Tao, YANG Yunping, MI Chun, CHEN Zhengquan, WANG Chunxiang, CHEN Longfei, ZHANG Yuchun. Maximum Temperature in Bifurcated Tunnel Based on Synergistic Effect of Longitudinal Ventilation and Air Curtain[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230157 |
To investigate the effect of synergistic longitudinal ventilation and air curtain on the control of tunnel fire smoke in urban bifurcated tunnels, the 1∶10 small-sized bifurcated tunnel fire experiments were conducted, and the along-travel and maximum temperatures of bifurcated tunnels under the synergistic effect of longitudinal ventilation and air curtains were analyzed by taking into account the variables of longitudinal ventilation, jet velocity, angle, and thickness of air curtain. Firstly, the smoke and heat insulation effect of the air curtain was analyzed through 57 sets of small-sized tunnel fire experiments. Then, based on the dimensionless empirical correlation formula for the maximum temperature rise of the ceiling in a tunnel fire, a model of the maximum temperature rise under the synergistic effect of air curtain and longitudinal ventilation was constructed at a fixed heat release rate of 47.9 kW. Finally, the experimental values of the maximum temperature rise under different working conditions were compared with the predicted values of the theoretical models of the maximum temperature rise. The results show that an air curtain can effectively help longitudinal ventilation reduce the temperature in the main tunnel by up to 420 ℃ while effectively preventing smoke from entering the bifurcated tunnels. When the jet velocity of the air curtain is small, the increase in longitudinal wind speed can effectively prevent the accumulation of smoke in the bifurcation and improve the insulation efficiency of the air curtain on the smoke. In addition, the temperature of the smoke at the tunnel bifurcation point can be reduced by up to 170 ℃. The constructed theoretical model of the maximum temperature rise is compared with the experimental results, and the error between them is less than 10%.
[1] |
LI Y Z, INGASON H. Overview of research on fire safety in underground road and railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 568-589. doi: 10.1016/j.tust.2018.08.013
|
[2] |
LI Y Z, INGASON H. Editorial: tunnel fire safety[J]. Fire Safety Journal, 2018, 97: 85-86. doi: 10.1016/j.firesaf.2018.03.006
|
[3] |
谢永亮,吕娜. 纵向通风作用下隧道内氢泄漏爆炸隐患分析[J]. 西南交通大学学报,2024,59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222
XIE Yongliang, LU Na. Explosion hazard analysis of tunnel leaked hydrogen in the tunnel under longitudinal ventilation[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 81-86. doi: 10.3969/j.issn.0258-2724.20220222
|
[4] |
林鹏,王国元,司有亮,等. 隧道火灾排烟口位置对排烟效率的影响[J]. 西南交通大学学报,2019,54(5): 1055-1062,1112.
LIN Peng, WANG Guoyuan, SI Youliang, et al. Influence of vent location on efficiency of smoke extraction in tunnel fire[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1055-1062,1112.
|
[5] |
ALPERT R L. Calculation of response time of ceiling-mounted fire detectors[J]. Fire Technology, 1972, 8(3): 181-195. doi: 10.1007/BF02590543
|
[6] |
KURIOKA H, OKA Y, SATOH H, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal, 2003, 38(4): 319-340. doi: 10.1016/S0379-7112(02)00089-9
|
[7] |
LI Y Z, LEI B, INGASON H. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires[J]. Fire Safety Journal, 2011, 46(4): 204-210. doi: 10.1016/j.firesaf.2011.02.002
|
[8] |
王钟宽,粟萌萌,黄欣,等. 不同坡度隧道火灾自熄现象试验研究[J]. 中国安全科学学报,2021,31(1): 186-191.
WANG Zhongkuan, SU Mengmeng, HUANG Xin, et al. Experimental study on fire self-extinction phenomenon in tunnel with different slopes[J]. China Safety Science Journal, 2021, 31(1): 186-191.
|
[9] |
姜学鹏,陈欣格,郭昆. 侧部点式排烟隧道火灾临界风速研究[J]. 中国安全科学学报,2021,31(3): 105-111.
JIANG Xuepeng, CHEN Xinge, GUO Kun. Study on critical velocity of lateral point smoke extraction tunnel fire[J]. China Safety Science Journal, 2021, 31(3): 105-111.
|
[10] |
YANG D, LIU Y L, ZHAO C M, et al. Multiple steady states of fire smoke transport in a multi-branch tunnel: theoretical and numerical studies[J]. Tunnelling and Underground Space Technology, 2017, 61: 189-197. doi: 10.1016/j.tust.2016.10.009
|
[11] |
HUANG Y B, LI Y F, LI J M, et al. Experimental investigation on maximum gas temperature beneath the ceiling in a branched tunnel fire[J]. International Journal of Thermal Sciences, 2019, 145: 105997.1-105997.9.
|
[12] |
ZHANG Y L, CHEN C K, LEI P, et al. A study on buoyancy-driven maximum ceiling gas temperature of T-shaped bifurcated channel-like structure in fire environment[J]. International Journal of Thermal Sciences, 2022, 171: 107213.1-107213.15.
|
[13] |
SHU C, WANG L L, ZHANG C, et al. Air curtain effectiveness rating based on aerodynamics[J]. Building and Environment, 2020, 169: 106582.1-106582.11.
|
[14] |
YU L X, LIU F, BEJI T, et al. Experimental study of the effectiveness of air curtains of variable width and injection angle to block fire-induced smoke in a tunnel configuration[J]. International Journal of Thermal Sciences, 2018, 134: 13-26. doi: 10.1016/j.ijthermalsci.2018.07.044
|
[15] |
LI X C, ZHAO X L, JIANG Y F, et al. Air curtain dust-collecting technology: influence factors for air curtain performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104780.1-104780.11.
|
[16] |
LI T, YANG Y P, LI X S, et al. Experimental study of air curtain thermal insulation efficiency and maximum temperature rise beneath the ceiling under longitudinal ventilation in bifurcated tunnels[J]. Tunnelling and Underground Space Technology, 2023, 137: 105112.1-105112.10.
|
[17] |
LI T, YANG Z Y, LI X S, et al. Experimental study on fire temperature distribution based on air curtain separation effect in a reduced-scale bifurcation tunnel[J]. Tunnelling and Underground Space Technology, 2022, 126: 104548.1-104548.15.
|
[18] |
纪杰,钟委,高子鹤. 狭长空间烟气流动特性及控制方法[M]. 北京: 科学出版社,2015.
|
[19] |
李小松. 火源两侧受限条件下隧道强羽流火灾特征规律研究[D]. 成都: 西南交通大学,2022.
|
[20] |
CHEN L F, DU S, ZHANG Y C, et al. Experimental study on the maximum temperature and flame extension length driven by strong plume in a longitudinal ventilated tunnel[J]. Experimental Thermal and Fluid Science, 2019, 101: 296-303. doi: 10.1016/j.expthermflusci.2018.10.022
|
[21] |
陈贻来. 单个小汽车火灾热释放速率影响因素分析[J]. 消防科学与技术,2010,29(5): 379-382. doi: 10.3969/j.issn.1009-0029.2010.05.006
CHEN Yilai. Analysis on the factors influencing the heat release rate of vehicle fire accident[J]. Fire Science and Technology, 2010, 29(5): 379-382. doi: 10.3969/j.issn.1009-0029.2010.05.006
|
[22] |
夏永旭,韩兴博,姚毅. 隧道内大巴车火灾热释放率及温度场研究[J]. 现代隧道技术,2018,55(3): 153-159.
XIA Yongxu, HAN Xingbo, YAO Yi. Heat release rate and temperature field of a bus on fire[J]. Modern Tunnelling Technology, 2018, 55(3): 153-159.
|