• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Turn off MathJax
Article Contents
DU Yingjin, XI Chuanjie, HU Xiewen, WU Jianli, LIU Bo, HE Kun. Susceptibility Assessment of Collapses and Landslides Based on Cluster and Random Forest Coupled Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220864
Citation: DU Yingjin, XI Chuanjie, HU Xiewen, WU Jianli, LIU Bo, HE Kun. Susceptibility Assessment of Collapses and Landslides Based on Cluster and Random Forest Coupled Model[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220864

Susceptibility Assessment of Collapses and Landslides Based on Cluster and Random Forest Coupled Model

doi: 10.3969/j.issn.0258-2724.20220864
  • Received Date: 13 Dec 2022
  • Rev Recd Date: 01 Sep 2023
  • Available Online: 09 Jul 2024
  • Hazard susceptibility assessment is generally a probabilistic modeling based on the spatial distribution characteristics of hazards, but the hazards have spatial heterogeneity. In order to solve the spatial heterogeneity of hazards, the collapses and landslides along the Wenchuan-Lixian section in the Wenchuan-Maerkang Expressway were studied. By using the K-mean algorithm, the hazard-threaten objects (people and property) and risk degree (damaged house area and damaged road length) in the study area were spatially clustered, and different clustering attributes were assigned to the study area. Then, nine factors including slope angle, elevation, slope aspect, curvature, surface cutting degree, river curvature coefficient, distance from the tectonic zone, bank slope structure, and formation lithology were selected in terms of hydrology, geology, and geomorphic conditions. The samples were divided into 70% training data and 30% test data. The performance of the K-RF model and the traditional random forest (RF) model in susceptibility assessment was compared to provide theoretical support for operation safety and hazard prevention of expressways. The results show that the K-RF model contains a total of 82.95% of the hazard points in the areas with extremely high susceptibility, which has better assessment results than the single RF model (with AUC value increased by 5.4%). Therefore, it is feasible to use clustering to solve the spatial heterogeneity of hazards. However, the research limitation is that it fails to reflect the spatial heterogeneity of hazards from the hazard itself. The coupled model is a comprehensive reflection of susceptibility and vulnerability in essence.

     

  • loading
  • [1]
    FELL R, COROMINAS J, BONNARD C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology, 2008, 102(3/4): 85-98.
    [2]
    NHU V H, HOANG N D, NGUYEN H, et al. Effectiveness assessment of Keras based deep learning with different robust optimization algorithms for shallow landslide susceptibility mapping at tropical area[J]. Catena, 2020, 188: 104458.1-104458.13.
    [3]
    李利峰,杨华,张娟,等. 基于人工神经网络的区域滑坡预测研究[J]. 气象与环境科学,2020,43(3): 65-70.

    LI Lifeng, YANG Hua, ZHANG Juan, et al. Research on regional landslide prediction based on artificial neural network[J]. Meteorological and Environmental Sciences, 2020, 43(3): 65-70.
    [4]
    常晁瑜,薄景山,李孝波,等. 地震黄土滑坡滑距预测的BP神经网络模型[J]. 地震工程学报,2020,42(6): 1609-1614. doi: 10.3969/j.issn.1000-0844.2020.06.1609

    CHANG Chaoyu, BO Jingshan, LI Xiaobo, et al. A BP neural network model for forecasting sliding distance of seismic loess landslides[J]. China Earthquake Engineering Journal, 2020, 42(6): 1609-1614. doi: 10.3969/j.issn.1000-0844.2020.06.1609
    [5]
    许冲,徐锡伟. 逻辑回归模型在玉树地震滑坡危险性评价中的应用与检验[J]. 工程地质学报,2012,20(3): 326-333. doi: 10.3969/j.issn.1004-9665.2012.03.004

    XU Chong, XU Xiwei. Logistic regression model and its validation for hazard mapping of landslides triggered by Yushu earthquake[J]. Journal of Engineering Geology, 2012, 20(3): 326-333. doi: 10.3969/j.issn.1004-9665.2012.03.004
    [6]
    吴博,赵法锁,贺子光,等. 基于BA-LSSVM模型的黄土滑坡致灾范围预测[J]. 中国地质灾害与防治学报,2020,31(5): 1-6.

    WU Bo, ZHAO Fasuo, HE Ziguang, et al. Prediction of the disaster area of loess landslide based on least square support vector machine optimized by bat algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 1-6.
    [7]
    XI C J, HAN M, HU X W, et al. Effectiveness of Newmark-based sampling strategy for coseismic landslide susceptibility mapping using deep learning, support vector machine, and logistic regression[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5): 174-196. doi: 10.1007/s10064-022-02664-5
    [8]
    文海家,胡东萍,王桂林. 汶川县地震滑坡易发性LR与NN评价比较研究[J]. 土木工程学报,2014,47(增1): 17-23.

    WEN Haijia, HU Dongping, WANG Guilin. Comparative study on LR and NN evaluation of earthquake landslide susceptibility in Wenchuan County[J]. China Civil Engineering Journal, 2014, 47(S1): 17-23.
    [9]
    YAO X, THAM L G, DAI F C. Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China[J]. Geomorphology, 2008, 101(4): 572-582. doi: 10.1016/j.geomorph.2008.02.011
    [10]
    许冲,徐锡伟. 基于不同核函数的2010年玉树地震滑坡空间预测模型研究[J]. 地球物理学报,2012,55(9): 2994-3005. doi: 10.6038/j.issn.0001-5733.2012.09.018

    XU Chong, XU Xiwei. The 2010 Yushu earthquake triggered landslides spatial prediction models based on several kernel function types[J]. Chinese Journal of Geophysics, 2012, 55(9): 2994-3005. doi: 10.6038/j.issn.0001-5733.2012.09.018
    [11]
    TRUONG X, MITAMURA M, KONO Y, et al. Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree[J]. Applied Sciences, 2018, 8(7): 1046.1-1046.22.
    [12]
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. doi: 10.1023/A:1010933404324
    [13]
    FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. doi: 10.1006/jcss.1997.1504
    [14]
    FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. doi: 10.1214/aos/1013203450
    [15]
    WANG Y M, FENG L W, LI S J, et al. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China[J]. Catena, 2020, 188: 104425.1-104425.13.
    [16]
    DENG M, YANG W T, LIU Q L, et al. Heterogeneous space–time artificial neural networks for space–time series prediction[J]. Transactions in GIS, 2018, 22(1): 183-201. doi: 10.1111/tgis.12302
    [17]
    黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1): 156-167.

    HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167.
    [18]
    兰恒星,伍法权,王思敬. 基于GIS的滑坡CF多元回归模型及其应用[J]. 山地学报,2002,20(6): 732-737. doi: 10.3969/j.issn.1008-2786.2002.06.015

    LAN Hengxing, WU Faquan, WANG Sijing. GIS based landslide CF multi-variable regression model and its application[J]. Journal of Mountain Research, 2002, 20(6): 732-737. doi: 10.3969/j.issn.1008-2786.2002.06.015
    [19]
    陈晓利,冉洪流,祁生文. 1976年龙陵地震诱发滑坡的影响因子敏感性分析[J]. 北京大学学报(自然科学版),2009,45(1): 104-110. doi: 10.3321/j.issn:0479-8023.2009.01.016

    CHEN Xiaoli, RAN Hongliu, QI Shengwen. Triggering factors susceptibility of earthquake-induced landslides in 1976 Longling earthquake[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 104-110. doi: 10.3321/j.issn:0479-8023.2009.01.016
    [20]
    许冲,戴福初,姚鑫,等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报,2010,29(增1): 2972-2981.

    XU Chong, DAI Fuchu, YAO Xin, et al. Analysis of deterministic coefficient of influencing factors of Wenchuan earthquake landslide disaster based on GIS[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2972-2981.
    [21]
    陈绪坚,陈清扬. 黄河下游河型转换及弯曲变化机理[J]. 泥沙研究,2013(1): 1-6. doi: 10.3969/j.issn.0468-155X.2013.01.001

    CHEN Xujian, CHEN Qingyang. Theory of river pattern transformation and change of channel sinuosity ratio in Lower Yellow River[J]. Journal of Sediment Research, 2013(1): 1-6. doi: 10.3969/j.issn.0468-155X.2013.01.001
    [22]
    CHEN Z, LIANG S Y, KE Y T, et al. Landslide susceptibility assessment using different slope units based on the evidential belief function model[J]. Geocarto International, 2020, 35(15): 1641-1664. doi: 10.1080/10106049.2019.1582716
    [23]
    WEN H, WU X Y, LIAO X, et al. Application of machine learning methods for snow avalanche susceptibility mapping in the Parlung Tsangpo Catchment, southeastern Qinghai−Tibet Plateau[J]. Cold Regions Science and Technology, 2022, 198: 103535.1-103535.12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views(153) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return