Citation: | WANG Bo, LUO Shihui, WANG Chen, QU Tianwei, MA Weihua, LEI Cheng. Adhesion Adaptability of Dual-Source-Powered Electric Multiple Unit on Qinghai−Xizang Line[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220843 |
In order to analyze the feasibility of a dual-source-powered electric multiple unit (EMU) with enhanced operational efficiency on the Qinghai–Xizang Line (Golmud–Lhasa section), the dynamics model of EMU was established and verified. A dynamic method was adopted to study the relationship among the traction adhesion coefficients, traction force, creepage, and speed for the dual-source-powered EMU and the HXN3 internal combustion locomotive operating on the straight sections, curved sections, and ramps of the Qinghai–Xizang Line. The adhesion characteristics of dual-source-powered EMU under traction conditions were validated by comparing the dynamic responses of the two locomotives. The analysis finds that: 1) The traction adhesion coefficients of the locomotives are proportional to their traction force. Moreover, within the speed range of 40–120 km/h, the adhesion coefficient of the dual-source-powered EMU decreases from 0.19 to 0.09, while the adhesion affluence increases from 59% to 85.7%. 2) The adhesion affluence of the dual-source-powered EMU is superior to that of the HXN3 locomotive in both straight sections and ramps, thereby enhancing its ability to cope with low wheel-rail adhesion conditions in harsh external environments and exhibiting better adaptability in plateau environments. 3) In the curved section, by ignoring the structure-induced adhesion reduction difference, the adhesion reduction amplitudes of the dual-source-powered EMU and HXN3 locomotive are 6.3% and 6.8%, respectively, at
[1] |
罗秀云,蒲云,陈尚云. 青藏铁路格拉段运输安全监控信息系统[J]. 西南交通大学学报,2005,40(5): 680-683.
LUO Xiuyun, PU Yun, CHEN Shangyun. Transportation safety monitor information system for gulmud-lasa line in qinghai-tibet railway[J]. Journal of Southwest Jiaotong University, 2005, 40(5): 680-683.
|
[2] |
魏玉光,杨浩,韩学雷. 青藏铁路弹性运输能力理论[J]. 北京交通大学学报,2006,30(3): 15-18,33.
WEI Yuguang, YANG Hao, HAN Xuelei. Elasticity transportation capacity theory of qinghai-tibet railway[J]. Journal of Beijing Jiaotong University, 2006, 30(3): 15-18,33.
|
[3] |
钱铭,张大勇,廖洪涛. 复兴号高原双源动力集中动车组关键技术[J]. 中国铁路,2022(6): 1-9.
QIAN Ming, ZHANG Dayong, LIAO Hongtao. Key technologies of Fuxing Plateau dual-source power centralized EMU[J]. China Railway, 2022(6): 1-9.
|
[4] |
黄问盈,杨宁清,黄民. 青藏高原铁路机车轮周功率的探讨[J]. 中国铁道科学,2001,22(4): 8-15.
HUANG Wenying, YANG Ningqing, HUANG Min. Study on locomotive output power at wheel rim for Qinghai—Tibet Plateau railway[J]. China Railway Science, 2001, 22(4): 8-15.
|
[5] |
王晨,罗世辉,樊慧,等. 高原机车悬挂方案对车辆振动特性的影响[J]. 振动 测试与诊断,2018,38(3): 583-589.
WANG Chen, LUO Shihui, FAN Hui, et al. Influence of plateau locomotive suspension structure on vehicle vibration characteristics[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(3): 583-589.
|
[6] |
伍赛特. 青藏铁路机车车辆选型及技术特点研究[J]. 现代制造技术与装备,2020(3): 13-14,17.
WU Saite. Research on selection and technical characteristics of locomotive and rolling stock of Qinghai Tibet railway[J]. Modern Manufacturing Technology and Equipment, 2020(3): 13-14,17.
|
[7] |
申瑞源. 我国机车车辆技术的发展与展望[J]. 铁道学报,2019,41(1): 36-42.
SHEN Ruiyuan. Development and prospect of rolling stock technology in China[J]. Journal of the China Railway Society, 2019, 41(1): 36-42.
|
[8] |
王佥. FXN3型客运内燃机车车体设计与分析[D]. 大连:大连理工大学,2019.
|
[9] |
赵鑫,温泽峰,王衡禹,等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报,2021,21(1): 1-35.
ZHAO Xin, WEN Zefeng, WANG Hengyu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35.
|
[10] |
IMAI K, OHISHI K, SANO T, et al. Planning torque distribution control of rolling stock for fine anti-slip/skid re-adhesion control[J]. IEEJ Transactions on Industry Applications, 2010, 130(7): 890-901. doi: 10.1541/ieejias.130.890
|
[11] |
JOHNSON K L. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25(3): 339-346. doi: 10.1115/1.4011823
|
[12] |
BHASKAR A, JOHNSON K L, WOOD G D, et al. Wheel-rail dynamics with closely conformal contact Part 1: dynamic modelling and stability analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1997, 211(1): 11-26. doi: 10.1243/0954409971530860
|
[13] |
DOI H, MIYAMOTO T, NISHIYAMA Y, et al. A new experimental device to investigate creep forces between wheel and rail[J]. Wear, 2011, 271(1/2): 40-46.
|
[14] |
ZHU Y, OLOFSSON U. An adhesion model for wheel-rail contact at the micro level using measured 3D surfaces[J]. Wear, 2014, 314(1/2): 162-170.
|
[15] |
SPIRYAGIN M, LEE K S, YOO H H. Control system for maximum use of adhesive forces of a railway vehicle in a tractive mode[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 709-720. doi: 10.1016/j.ymssp.2007.09.018
|
[16] |
TELLISKIVI T. Simulation of wear in a rolling–sliding contact by a semi-Winkler model and the Archard’s wear law[J]. Wear, 2004, 256(7/8): 817-831.
|
[17] |
陈光雄. 钢轨波磨预测模型验证工况的研究[J]. 西南交通大学学报,2022,57(5): 1017-1023,1054.
CHEN Guangxiong. Study on validation conditions of rail corrugation prediction models[J]. Journal of Southwest Jiaotong University, 2022, 57(5): 1017-1023,1054.
|
[18] |
毕鑫,罗世辉,马卫华. 牵引力对机车车轮轮轨黏着性能的影响分析[J]. 铁道学报,2014,36(2): 18-24.
BI Xin, LUO Shihui, MA Weihua. Analysis on influence of traction force on locomotive wheel-rail adhesion performance[J]. Journal of the China Railway Society, 2014, 36(2): 18-24.
|
[19] |
POLACH O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005, 258(7/8): 992-1000.
|
[20] |
TOMBERGER C, DIETMAIER P, SEXTRO W, et al. Friction in wheel–rail contact: a model comprising interfacial fluids, surface roughness and temperature[J]. Wear, 2011, 271(1/2): 2-12.
|
[21] |
曲天威,罗世辉,马卫华. 33 t轴重内燃机车方案及机车曲线黏着问题研究[J]. 铁道学报,2020,42(9): 39-48.
QU Tianwei, LUO Shihui, MA Weihua. Study on diesel locomotive concepts with 33 t axle load and its curving adhesion problem[J]. Journal of the China Railway Society, 2020, 42(9): 39-48.
|
[22] |
YAMASHITA M, SOEDA T. Development of re-adhesion control method considering axle-weight transfer of electric locomotive[J]. Quarterly Report of RTRI, 2011, 52(1): 7-12. doi: 10.2219/rtriqr.52.7
|
[23] |
黄问盈. 铁道轮轨黏着系数[J]. 铁道机车车辆,2010,30(5): 17-25,33.
HUANG Wenying. Railway wheel-rail adhesion coefficient[J]. Railway Locomotive & Car, 2010, 30(5): 17-25,33.
|
[24] |
王文健,刘启跃. 轮轨黏着行为与增黏[M]. 北京:科学出版社,2017.
|
[25] |
薛应花,丁军君,王利军,等. 面向川藏铁路的机车车辆运行基本阻力研究[J]. 机车电传动,2021(3): 67-72.
XUE Yinghua, DING Junjun, WANG Lijun, et al. Research on the basic resistance of locomotives and rolling stocks in sichuan-tibet railway[J]. Electric Drive for Locomotives, 2021(3): 67-72.
|
[26] |
廖子平. HXN3高原型内燃机车轮对轮缘裂纹研究[J]. 技术与市场,2020,27(11): 14-17,20.
LIAO Ziping. Study on wheel flange crack of HXN3 high prototype internal combustion engine wheel set[J]. Technology and Market, 2020, 27(11): 14-17,20.
|
[27] |
何华武,刘增杰,刁晓明,等. 既有线提速200 km/h平纵断面技术标准研究与验证[J]. 铁道学报,2007,29(2): 64-70.
HE Huawu, LIU Zengjie, DIAO Xiaoming, et al. Study and validation of the technical standard for the plane and profile sections of existing lines with 200 km/h speed-raising[J]. Journal of the China Railway Society, 2007, 29(2): 64-70.
|