• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
KANG Dejian, YI Dong, WANG Hui. Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723
Citation: KANG Dejian, YI Dong, WANG Hui. Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1240-1247. doi: 10.3969/j.issn.0258-2724.20220723

Operation Status of Tree Continuous Co-phase Power Supply System of Heavy-Haul Railways

doi: 10.3969/j.issn.0258-2724.20220723
  • Received Date: 20 Oct 2022
  • Rev Recd Date: 16 Feb 2023
  • Available Online: 12 Oct 2023
  • Publish Date: 02 Mar 2023
  • The tree continuous co-phase power supply system of heavy-haul railways can minimize the safety hazards caused by neutral sections in the line and improve the utilization rate of regenerative braking energy, power supply capacity, and power quality of the traction power supply system. In order to make the tree continuous co-phase power supply system run smoothly, the operation status of the system was studied from four aspects: equalizing current, power supply capacity, negative sequence evaluation, fault analysis, and protection configuration. The equalizing current evaluation model of the bilateral power supply system under different topologies was constructed to reveal the external power supply composition of the tree continuous co-phase power supply system of heavy-haul railways. With the tree continuous co-phase power supply transformation scheme of a heavy-haul railway as an example, the power supply capacity of the system under normal and fault conditions and the negative sequence impact on the external power grid were explored. Different types of faults in the system were analyzed, and the protection configuration scheme of the system was proposed. Compared with parallel bilateral power supply, the results show that the tree continuous co-phase power supply system will not produce an equalizing current when the transformer ratios of two adjacent traction substations are the same. The minimum voltage of the up and down traction network of the transformation scheme is 22.74 kV, which meets the voltage requirements of the traction network. By setting the combined co-phase power supply device, the 95% probability value and maximum value of the three-phase voltage unbalance factor of the system are 1.20% and 1.65%, respectively. Compared with the traditional protection device scheme, the proposed protection configuration scheme can ensure the minimum outage interval of the traction network.

     

  • loading
  • [1]
    李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001

    LI Qunzhan. One new generation traction power supply system and its key technologies for electrification railway[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 559-568. doi: 10.3969/j.issn.0258-2724.2014.04.001
    [2]
    张丽艳,贾瑛,韩笃硕,等. 电气化铁路同相储能供电系统能量管理及容量配置策略[J]. 西南交通大学学报,2023,58(1): 22-29.

    ZHANG Liyan, JIA Ying, HAN Dushuo, et al. Energy management and capacity allocation scheme for co-phase traction power supply and energy storage system in electrified railways[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 22-29.
    [3]
    CHEN M W, LI Q Z, ROBERTS C, et al. Modelling and performance analysis of advanced combined co-phase traction power supply system in electrified railway[J]. IET Generation, Transmission & Distribution, 2016, 10(4): 906-916.
    [4]
    王辉,李群湛,李晋,等. 基于YNd变压器与静止无功发生器的电气化铁路同相供电综合补偿方案[J]. 电工技术学报,2020,35(17): 3739-3749. doi: 10.19595/j.cnki.1000-6753.tces.190957

    WANG Hui, LI Qunzhan, LI Jin, et al. Comprehensive compensation schemes of cophase power supply of electrified railway based on YNd transformer and static var generator[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3739-3749. doi: 10.19595/j.cnki.1000-6753.tces.190957
    [5]
    周志成. 基于树形双边供电的重载铁路贯通同相供电方案[J]. 铁道科学与工程学报,2020,17(3): 722-731. doi: 10.19713/j.cnki.43-1423/u.T20191011

    ZHOU Zhicheng. Cophase connected power supply scheme of heavy haul railway based on tree bilateral power supply[J]. Journal of Railway Science and Engineering, 2020, 17(3): 722-731. doi: 10.19713/j.cnki.43-1423/u.T20191011
    [6]
    沈曼盛,周方圆. 国内外铁路牵引供电技术发展现状及趋势[J]. 电气化铁道,2019,30(1): 1-7,12. doi: 10.3969/j.issn.1007-936X.2019.01.001

    SHEN Mansheng, ZHOU Fangyuan. Current status and trend for development of railway traction power supply technologies at home and abroad[J]. Electric Railway, 2019, 30(1): 1-7,12. doi: 10.3969/j.issn.1007-936X.2019.01.001
    [7]
    李群湛,王辉,解绍锋. 电气化铁路双边供电技术应用研究[J]. 电气化铁道,2021,32(6): 1-4. doi: 10.19587/j.cnki.1007-936x.2021.06.001

    LI Qunzhan, WANG Hui, XIE Shaofeng. Discussion on application of bilateral power supply technology on electrified railway[J]. Electric Railway, 2021, 32(6): 1-4. doi: 10.19587/j.cnki.1007-936x.2021.06.001
    [8]
    智慧,袁勇,李剑,等. 双边供电模式下高速铁路AT供电系统供电能力计算与分析[J]. 中国铁路,2017(12): 66-71. doi: 10.19549/j.issn.1001-683x.2017.12.066

    ZHI Hui, YUAN Yong, LI Jian, et al. Calculation and analysis of the power supply capacity of the AT power supply system for high-speed railway under the two-way feeding model[J]. China Railway, 2017(12): 66-71. doi: 10.19549/j.issn.1001-683x.2017.12.066
    [9]
    CHOI K H. A phase-shifter for regulating circulating power flow in a parallel-feeding AC traction power system[J]. Journal of Electrical Engineering and Technology, 2014, 9(4): 1137-1144. doi: 10.5370/JEET.2014.9.4.1137
    [10]
    晏寒,解绍锋,王辉,等. 树形双边贯通供电方案及其应用研究[J]. 电力自动化设备,2022,42(5): 191-197.

    YAN Han, XIE Shaofeng, WANG Hui, et al. Research on tree bilateral continuous power supply scheme and its application[J]. Electric Power Automation Equipment, 2022, 42(5): 191-197.
    [11]
    李群湛,王辉,黄文勋,等. 电气化铁路牵引变电所群贯通供电系统及其关键技术[J]. 电工技术学报,2021,36(5): 1064-1074. doi: 10.19595/j.cnki.1000-6753.tces.191740

    LI Qunzhan, WANG Hui, HUANG Wenxun, et al. Interconnected power supply system of traction substation group and its key technologies for the electrified railway[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1064-1074. doi: 10.19595/j.cnki.1000-6753.tces.191740
    [12]
    赵元哲,李群湛,朱鹏,等. 新型双边供电系统谐波谐振特性分析[J]. 电力系统及其自动化学报,2017,29(8): 57-63. doi: 10.3969/j.issn.1003-8930.2017.08.009

    ZHAO Yuanzhe, LI Qunzhan, ZHU Peng, et al. Analysis of harmonic resonance in new bilateral power supply system[J]. Proceedings of the CSU-EPSA, 2017, 29(8): 57-63. doi: 10.3969/j.issn.1003-8930.2017.08.009
    [13]
    辛成山,张美娟. 交流电气化铁道双边供电研究[J]. 电气化铁道,1998,9(3): 6-11.
    [14]
    周志成,马庆安. 交流牵引供电系统双边供电均衡电流的预估方法[J]. 机车电传动,2020(4): 94-97. doi: 10.13890/j.issn.1000-128x.2020.04.019

    ZHOU Zhicheng, MA Qing’an. Prediction of balanced current in bilaterally-fed AC traction power supply system[J]. Electric Drive for Locomotives, 2020(4): 94-97. doi: 10.13890/j.issn.1000-128x.2020.04.019
    [15]
    王辉,刘炜,李群湛,等. 基于源网荷统一链式电路的交流电气化铁路动态潮流计算[J]. 中国电机工程学报,2022,42(11): 3936-3953.

    WANG Hui, LIU Wei, LI Qunzhan, et al. Dynamic power flow calculation of AC electrified railway based on source-grid-load unified chain circuit[J]. Proceedings of the CSEE, 2022, 42(11): 3936-3953.
    [16]
    李强,吴命利. 交流传动机车与直流传动机车混合运用条件下牵引网电压控制技术[J]. 铁道学报,2014,36(8): 19-24. doi: 10.3969/j.issn.1001-8360.2014.08.05

    LI Qiang, WU Mingli. Traction network voltage control techniques under the condition of hybrid application of AC drive and DC drive locomotives[J]. Journal of the China Railway Society, 2014, 36(8): 19-24. doi: 10.3969/j.issn.1001-8360.2014.08.05
    [17]
    周栋,张威,雷佳华. 重载铁路桥隧地段钢轨电位分布及其抑制措施[J]. 铁路通信信号工程技术,2022,19(增1): 127-131.

    ZHOU Dong, ZHANG Wei, LEI Jiahua. Rail potential distribution and its suppression measures in bridge and tunnel sections of heavy-haul railway[J]. Railway Signalling & Communication Engineering, 2022, 19(S1): 127-131.
    [18]
    周子槊,汪繁荣. 直供方式下影响钢轨电位分布的因素研究[J]. 湖北工业大学学报,2022,37(4): 49-53. doi: 10.3969/j.issn.1003-4684.2022.04.010

    ZHOU Zishuo, WANG Fanrong. Research on the factors affecting the rail potential distribution under the direct supply mode[J]. Journal of Hubei University of Technology, 2022, 37(4): 49-53. doi: 10.3969/j.issn.1003-4684.2022.04.010
    [19]
    WANG H, LIU W, LI Q Z, et al. Compensation of negative sequence for a novel AC integrated power supply system of urban rail transit[J]. IET Generation, Transmission & Distribution, 2021, 15(22): 3188-3203.
    [20]
    陈启迪,张丽艳,朱毅,等. 电气化铁路负序预测评估方法[J]. 电力系统及其自动化学报,2018,30(11): 1-7. doi: 10.3969/j.issn.1003-8930.2018.11.001

    CHEN Qidi, ZHANG Liyan, ZHU Yi, et al. Negative-sequence prediction and evaluation method for electrified railway[J]. Proceedings of the CSU-EPSA, 2018, 30(11): 1-7. doi: 10.3969/j.issn.1003-8930.2018.11.001
    [21]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量——三相电压不平衡: GB/T 15543—2008[S]. 北京: 中国标准出版社, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views(347) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return