• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
XIE Shaofeng, LI Weilan, HUANG Darui, ZHONG Fan. Modeling and Simulation of Inductive Coupling Interference from Suburban Railways to Buried Pipelines[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1256-1265, 1304. doi: 10.3969/j.issn.0258-2724.20220652
Citation: XIE Shaofeng, LI Weilan, HUANG Darui, ZHONG Fan. Modeling and Simulation of Inductive Coupling Interference from Suburban Railways to Buried Pipelines[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1256-1265, 1304. doi: 10.3969/j.issn.0258-2724.20220652

Modeling and Simulation of Inductive Coupling Interference from Suburban Railways to Buried Pipelines

doi: 10.3969/j.issn.0258-2724.20220652
  • Received Date: 28 Sep 2022
  • Rev Recd Date: 04 May 2023
  • Available Online: 14 Sep 2024
  • Publish Date: 08 May 2023
  • With the rapid development of suburban railways and oil and gas pipelines, parallel laying or cross-laying is inevitable for suburban railways and buried pipelines. In order to assess the impact of the traction power supply system of suburban railways on the safe operation of oil and gas pipelines, firstly, the mathematical model of the alternating current (AC) traction power supply system of the suburban railways and the adjacent buried pipelines was established, and the simulation based on CDEGS software was conducted. Next, the two cases of the oblique approach and parallel approach were unified by the equivalent distance method. The influence mechanism of the traction power supply system of the suburban railways on the adjacent buried pipeline was investigated, and the influence of factors including soil resistivity, distance between the conductor and the buried pipeline, locomotive load current, parallel length of railway and buried pipeline, pipeline coating resistivity, and number of current harmonics of electric multiple units on the inductive coupling voltage distribution along the pipeline was investigated. Finally, combined with the setting of a through ground line, four schemes to suppress the inductive coupling voltage were put forward for comparative analysis. The results show that the error of the equivalent distance method is within 5% when the ratio of the maximum distance to the minimum distance between the traction power supply system of the suburban railway and the buried pipeline is less than 4.5. The maximum value of the inductive coupling voltage of the pipeline increases with increasing soil resistivity. The decrease in the inductive coupling voltage is 50.6% when the distance between the suburban railway and the buried pipeline varies from 50 m to 250 m. The increase in the inductive coupling voltage rises significantly when the locomotive load current varies from 200 A to 1 000 A. The inductive coupling voltage increases from 22.6 V to 170.7 V when the parallel length varies from 2 km to 10 km. The harmonic content and the number of harmonics have a significant influence on the inductive coupling voltage. The best inductive coupling voltage suppression effect is achieved by adding a return line on the basis of the through ground line.

     

  • [1]
    曹建猷. 电气化铁道供电系统[M]. 北京:中国铁道出版社,1983.
    [2]
    李群湛,贺建闽. 牵引供电系统分析[M]. 3版. 成都:西南交通大学出版社,2012.
    [3]
    国家发展改革委,交通运输部,国家铁路局,等. 关于推动都市圈市域(郊)铁路加快发展的意见[Z]. 2020.
    [4]
    万红霞,李婷婷,宋东东,等. 杂散电流对埋地管道的腐蚀及排流方式的研究进展[J]. 表面技术,2021,50(4): 125-134.

    WAN Hongxia, LI Tingting, SONG Dongdong, et al. Research progress of stray current on corrosion and drainage method of buried pipeline[J]. Surface Technology, 2021, 50(4): 125-134.
    [5]
    梁毅,杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报,2020,40(3): 215-222. doi: 10.11902/1005.4537.2019.053

    LIANG Yi, DU Yanxia. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC interference[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 40(3): 215-222. doi: 10.11902/1005.4537.2019.053
    [6]
    朱久国. 交流电气化铁路对埋地油气管道电磁干扰特性研究[D]. 成都: 西南交通大学,2018.
    [7]
    胡士信,路民旭,杜艳霞,等. 管道交流腐蚀的新观点[J]. 腐蚀与防护,2010,31(6): 419-424.
    [8]
    吴荫顺,曹备. 阴极保护和阳极保护:原理、技术及工程应用[M]. 北京: 中国石化出版社,2007: 223.
    [9]
    WAKELIN R G, SHELDON C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline[C]//The 59th NACE Annual Conference. New Orleans: Corrosion, 2004: 04205.1-04205.9.
    [10]
    FLOYD R. Testing and mitigation of AC corrosion on 8 line: a field study[C]//The 59th NACE Annual Conference. New Orleans: Corrosion, 2004: 04210.1-04210.9.
    [11]
    LINHARDT P, BALL G. AC corrosion: results from laboratory investigations and from a failure analysis[C]//The 61th NACE Annual Conference. Houston: Corrosion, 2006: 06160.1-06160.9.
    [12]
    任增珺. 日东管道杂散电流干扰检测与防护[J]. 油气储运,2015,34(1): 111-114. doi: 10.6047/j.issn.1000-8241.2015.01.024

    REN Zengjun. Detection and protection of stray current interference of Rizhao–Dongming oil pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(1): 111-114. doi: 10.6047/j.issn.1000-8241.2015.01.024
    [13]
    CARSON J R. Wave propagation in overhead wires with ground return[J]. Bell System Technical Journal, 1926, 5(4): 539-554 doi: 10.1002/j.1538-7305.1926.tb00122.x
    [14]
    高攸纲,沈远茂,石丹. 交流电气化铁道对周围电气及电子系统的阻性耦合影响[J]. 邮电设计技术,2007(3): 57-60. doi: 10.3969/j.issn.1007-3043.2007.03.013

    GAO Youzang, SHEN Yuanmao, SHI Dan. Resistive coupling effects of AC electric railway to surrounding electric and electronic system[J]. Designing Techniques of Posts and Telecommunications, 2007(3): 57-60. doi: 10.3969/j.issn.1007-3043.2007.03.013
    [15]
    蒋俊. 交流线路正常运行时对平行敷设油气管道的电磁影响[J]. 电网技术,2008,32(2): 78-80,92.

    JIANG Jun. Electromagnetic influence of normally operating AC power transmission line on gas/oil pipeline parallel to transmission line[J]. Power System Technology, 2008, 32(2): 78-80,92.
    [16]
    汪可. 电气化铁路对油气管道的影响及防护措施[D]. 成都: 西南交通大学,2013.
    [17]
    YONG J, XIA B, YONG H, et al. Harmonic voltage induction on pipelines: measurement results and methods of assessment[C]//IEEE Transactions on Power Delivery. [S.l.]: IEEE, 2018: 2170-2179.
    [18]
    陈民武,朱久国,解绍锋,等. 牵引供电系统对埋地管道阻性耦合交流干扰建模及仿真[J]. 中国铁道科学,2018,39(2): 80-86. doi: 10.3969/j.issn.1001-4632.2018.02.10

    CHEN Minwu, ZHU Jiuguo, XIE Shaofeng, et al. Modeling and simulation of resistive coupling AC interference of traction power supply system to buried pipeline[J]. China Railway Science, 2018, 39(2): 80-86. doi: 10.3969/j.issn.1001-4632.2018.02.10
    [19]
    盛望群. 基于CDEGS的交流电气化铁路对沿线油气管道电磁干扰影响研究[J]. 铁道科学与工程学报,2020,17(8): 2101-2108.

    SHENG Wangqun. Study on influence of AC electrified railway on electromagnetic interference of oil and gas pipelines along the line based on CDEGS[J]. Journal of Railway Science and Engineering, 2020, 17(8): 2101-2108.
    [20]
    CHARALAMBOUS C A, DEMETRIOU A, LAZARI A L, et al. Effects of electromagnetic interference on underground pipelines caused by the operation of high voltage AC traction systems: the impact of harmonics[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2664-2672. doi: 10.1109/TPWRD.2018.2803080
    [21]
    齐磊,崔翔,郭剑,等. 特高压交流输电线路正常运行时对输油输气管道的感性耦合计算模型[J]. 中国电机工程学报,2010,30(21): 121-126.

    QI Lei, CUI Xiang, GUO Jian, et al. Inductive coupling modelling of normally operating UHV AC transmission line to adjacent oil/gas pipeline[J]. Proceedings of the CSEE, 2010, 30(21): 121-126.
    [22]
    国家质量监督检验检疫总局. 接地系统的土壤电阻率、接地阻抗和地面电位测量导则 第1部分:常规测量:GB/T 17949.1—2000[S]. 北京: 中国标准出版社,2000.
    [23]
    解绍锋,孙镜堤,骆冰祥,等. 高速铁路对邻近普速铁路电力电缆的干扰机理[J]. 西南交通大学学报,2021,56(1): 206-213.

    XIE Shaofeng, SUN Jingdi, LUO Bingxiang, et al. Mechanism of high-speed railway interference on power cables of adjacent normal-speed railway[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 206-213.
    [24]
    周胜军,谈萌. 基于监测数据的高铁动车组谐波特性分析[J]. 电力科学与技术学报,2018,33(3): 128-133. doi: 10.3969/j.issn.1673-9140.2018.03.020

    ZHOU Shengjun, TAN Meng. Harmonic characteristics analysis of electric multiple units in high-speed railway based on the monitoring data[J]. Journal of Electric Power Science and Technology, 2018, 33(3): 128-133. doi: 10.3969/j.issn.1673-9140.2018.03.020
    [25]
    周秀荣. 电气化铁路对通信线路的干扰影响及防护措施[J]. 中国铁路,2007(6): 66-68. doi: 10.3969/j.issn.1001-683X.2007.06.017
  • Relative Articles

    [1]BAO Xueying, SHEN Duhua, LI Yajuan, HE Zhenxia, ZHANG Chenghao, CHEN Huixin. Coupling Optimization and Regulation of Roadbed and Environment in Mountainous Railways[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230340
    [2]WANG Zhijie, CHENG Biao, YANG Guangqing, GAO Gushun, WANG He. Mesoscopic Study on Mechanical and Deformation Behaviors of Reinforced Buried Pipelines Under Vertical Loads[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 119-127. doi: 10.3969/j.issn.0258-2724.20230046
    [3]JIN Shoujie, GUAN Meiling, LI Kunpeng. Steady-State Power Flow in Bilateral Power Supply System for Suburban Railways[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1231-1239, 1302. doi: 10.3969/j.issn.0258-2724.20211044
    [4]LIU Wei, LIU Xueqing, WANG Hui, LI Qunzhan, LIU Tongtong, PAN Weiguo. Continuous Power Supply Scheme and Power Flow Algorithm of Traction Cables for Urban Railways[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 689-697. doi: 10.3969/j.issn.0258-2724.20200066
    [5]WANG Jiayong, XIAO Chengzhi, HE Chenxi. Numerical Analysis of Effect of Jacked Pile on Performance of Buried Pipes[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 322-329. doi: 10.3969/j.issn.0258-2724.2018.02.014
    [6]CUI Sheng'ai, LIU Pin, CAO Yibin, SU Jiao, ZHU Bing. Simulation Study on Multiline Vehicle-Bridge Coupled Vibration[J]. Journal of Southwest Jiaotong University, 2017, 30(5): 835-843. doi: 10.3969/j.issn.0258-2724.2017.05.001
    [7]DUAN Lunliang, ZHENG Dongsheng, ZHANG Qibo, ZHU Bing, YANG Bing. Numerical Study on Wave-induced Oscillatory Soil Liquefaction around a Partially Buried Pipeline[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 671-677. doi: 10.3969/j.issn.0258-2724.2017.04.004
    [8]XIAO Chengzhi, WANG Jiayong, YANG Yaxin, ZHOU Xia. Deformation and Mechanical Performance of Buried HDPE Pipes Reinforced by Geogrids[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 38-44,68. doi: 10.3969/j.issn.0258-2724.2017.01.006
    [9]LIANG Jianying, LIU Zhiming. Algorithm for Eliminating Interactions Between Fundamental Wave and Harmonics in Phasor Estimation[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 736-742. doi: 10.3969/j.issn.0258-2724.2016.04.019
    [10]GUO Jiling, XIAO Jian, QIU Zhongcai, LUO Peng. Vector Control of Seven-Phase Induction Motor with Harmonic Currents Elimination[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 875-881. doi: 10.3969/j.issn.0258-2724.2014.05.021
    [11]CUIShengai|SHAN Deshan|ZHUBing, . Simulation of Vehicle-Bridge Coupling Vibration for Yujiang River Bridge on Nanning-Guangzhou High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2011, 24(3): 385-390. doi: 10.3969/j.issn.0258-2724.2011.03.005
    [12]LIU Ya-Mei, YANG Hong-Geng, MA Chao. New Estimation Method for Harmonic and Inter-Harmonic Parameters[J]. Journal of Southwest Jiaotong University, 2011, 24(4): 604-610. doi: 10.3969/j.issn.0258-2724.2011.04.013
    [13]GUO Lei, LI Qunzhan, LIU Wei, XIE Shaofeng. Simulation Analysis of Dynamic Characteristic of Harmonics for High-Speed Locomotive Running at Rated Power[J]. Journal of Southwest Jiaotong University, 2009, 22(6): 835-840.
    [14]WANG Jijian, GAO Bo, YE Qiang, WU Guangning. Calculation of Space Electric Field in Railway Container Center Station and Induced Current of Reach Stacker[J]. Journal of Southwest Jiaotong University, 2008, 21(2): 238-241,274.
    [15]XIE Shaofeng, LI Qunzhan. Emission Limits to Harmonics of Electrified Railway[J]. Journal of Southwest Jiaotong University, 2007, 20(3): 367-372.
    [16]CHEN Wei-rong, TANG Lei. Current Detection Control of Active Power Filter under Non-Ideal Voltage Source[J]. Journal of Southwest Jiaotong University, 2006, 19(1): 31-36.
    [17]SHAN De-shan, LI Qiao. Coupled Vibration Analysis of X-Style Arch Bridge and Vehicles[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 53-58.
  • Cited by

    Periodical cited type(1)

    1. 刘炜,李松原,唐宇宁. 轨道交通直流干扰的车-地-网动态耦合仿真. 西南交通大学学报. 2025(01): 156-165 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-030102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.1 %FULLTEXT: 23.1 %META: 58.5 %META: 58.5 %PDF: 18.5 %PDF: 18.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 31.9 %其他: 31.9 %其他: 0.4 %其他: 0.4 %上海: 0.8 %上海: 0.8 %保定: 0.4 %保定: 0.4 %北京: 1.2 %北京: 1.2 %十堰: 0.8 %十堰: 0.8 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.8 %哥伦布: 0.8 %嘉兴: 0.4 %嘉兴: 0.4 %大庆: 0.4 %大庆: 0.4 %天津: 3.5 %天津: 3.5 %安曼: 0.8 %安曼: 0.8 %宿州: 0.8 %宿州: 0.8 %常州: 0.4 %常州: 0.4 %常德: 0.8 %常德: 0.8 %张家口: 7.3 %张家口: 7.3 %成都: 1.5 %成都: 1.5 %扬州: 0.8 %扬州: 0.8 %昆明: 0.4 %昆明: 0.4 %杭州: 0.8 %杭州: 0.8 %松原: 0.4 %松原: 0.4 %武汉: 0.4 %武汉: 0.4 %池州: 3.1 %池州: 3.1 %温州: 0.4 %温州: 0.4 %漯河: 3.1 %漯河: 3.1 %焦作: 0.4 %焦作: 0.4 %石家庄: 1.9 %石家庄: 1.9 %福州: 0.4 %福州: 0.4 %芒廷维尤: 13.1 %芒廷维尤: 13.1 %芝加哥: 1.2 %芝加哥: 1.2 %菏泽: 0.4 %菏泽: 0.4 %衡阳: 0.4 %衡阳: 0.4 %西宁: 11.9 %西宁: 11.9 %西安: 2.3 %西安: 2.3 %诺沃克: 5.0 %诺沃克: 5.0 %贵阳: 0.4 %贵阳: 0.4 %郑州: 0.4 %郑州: 0.4 %长沙: 0.4 %长沙: 0.4 %黄石: 0.4 %黄石: 0.4 %其他其他上海保定北京十堰哈尔滨哥伦布嘉兴大庆天津安曼宿州常州常德张家口成都扬州昆明杭州松原武汉池州温州漯河焦作石家庄福州芒廷维尤芝加哥菏泽衡阳西宁西安诺沃克贵阳郑州长沙黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(6)

    Article views(151) PDF downloads(48) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return