Citation: | XIE Shaofeng, LI Weilan, HUANG Darui, ZHONG Fan. Modeling and Simulation of Inductive Coupling Interference from Suburban Railways to Buried Pipelines[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1256-1265, 1304. doi: 10.3969/j.issn.0258-2724.20220652 |
With the rapid development of suburban railways and oil and gas pipelines, parallel laying or cross-laying is inevitable for suburban railways and buried pipelines. In order to assess the impact of the traction power supply system of suburban railways on the safe operation of oil and gas pipelines, firstly, the mathematical model of the alternating current (AC) traction power supply system of the suburban railways and the adjacent buried pipelines was established, and the simulation based on CDEGS software was conducted. Next, the two cases of the oblique approach and parallel approach were unified by the equivalent distance method. The influence mechanism of the traction power supply system of the suburban railways on the adjacent buried pipeline was investigated, and the influence of factors including soil resistivity, distance between the conductor and the buried pipeline, locomotive load current, parallel length of railway and buried pipeline, pipeline coating resistivity, and number of current harmonics of electric multiple units on the inductive coupling voltage distribution along the pipeline was investigated. Finally, combined with the setting of a through ground line, four schemes to suppress the inductive coupling voltage were put forward for comparative analysis. The results show that the error of the equivalent distance method is within 5% when the ratio of the maximum distance to the minimum distance between the traction power supply system of the suburban railway and the buried pipeline is less than 4.5. The maximum value of the inductive coupling voltage of the pipeline increases with increasing soil resistivity. The decrease in the inductive coupling voltage is 50.6% when the distance between the suburban railway and the buried pipeline varies from 50 m to 250 m. The increase in the inductive coupling voltage rises significantly when the locomotive load current varies from 200 A to 1 000 A. The inductive coupling voltage increases from 22.6 V to 170.7 V when the parallel length varies from 2 km to 10 km. The harmonic content and the number of harmonics have a significant influence on the inductive coupling voltage. The best inductive coupling voltage suppression effect is achieved by adding a return line on the basis of the through ground line.
[1] |
曹建猷. 电气化铁道供电系统[M]. 北京:中国铁道出版社,1983.
|
[2] |
李群湛,贺建闽. 牵引供电系统分析[M]. 3版. 成都:西南交通大学出版社,2012.
|
[3] |
国家发展改革委,交通运输部,国家铁路局,等. 关于推动都市圈市域(郊)铁路加快发展的意见[Z]. 2020.
|
[4] |
万红霞,李婷婷,宋东东,等. 杂散电流对埋地管道的腐蚀及排流方式的研究进展[J]. 表面技术,2021,50(4): 125-134.
WAN Hongxia, LI Tingting, SONG Dongdong, et al. Research progress of stray current on corrosion and drainage method of buried pipeline[J]. Surface Technology, 2021, 50(4): 125-134.
|
[5] |
梁毅,杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报,2020,40(3): 215-222. doi: 10.11902/1005.4537.2019.053
LIANG Yi, DU Yanxia. Research progress on evaluation criteria and mechanism of corrosion under cathodic protection and AC interference[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 40(3): 215-222. doi: 10.11902/1005.4537.2019.053
|
[6] |
朱久国. 交流电气化铁路对埋地油气管道电磁干扰特性研究[D]. 成都: 西南交通大学,2018.
|
[7] |
胡士信,路民旭,杜艳霞,等. 管道交流腐蚀的新观点[J]. 腐蚀与防护,2010,31(6): 419-424.
|
[8] |
吴荫顺,曹备. 阴极保护和阳极保护:原理、技术及工程应用[M]. 北京: 中国石化出版社,2007: 223.
|
[9] |
WAKELIN R G, SHELDON C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline[C]//The 59th NACE Annual Conference. New Orleans: Corrosion, 2004: 04205.1-04205.9.
|
[10] |
FLOYD R. Testing and mitigation of AC corrosion on 8 line: a field study[C]//The 59th NACE Annual Conference. New Orleans: Corrosion, 2004: 04210.1-04210.9.
|
[11] |
LINHARDT P, BALL G. AC corrosion: results from laboratory investigations and from a failure analysis[C]//The 61th NACE Annual Conference. Houston: Corrosion, 2006: 06160.1-06160.9.
|
[12] |
任增珺. 日东管道杂散电流干扰检测与防护[J]. 油气储运,2015,34(1): 111-114. doi: 10.6047/j.issn.1000-8241.2015.01.024
REN Zengjun. Detection and protection of stray current interference of Rizhao–Dongming oil pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(1): 111-114. doi: 10.6047/j.issn.1000-8241.2015.01.024
|
[13] |
CARSON J R. Wave propagation in overhead wires with ground return[J]. Bell System Technical Journal, 1926, 5(4): 539-554 doi: 10.1002/j.1538-7305.1926.tb00122.x
|
[14] |
高攸纲,沈远茂,石丹. 交流电气化铁道对周围电气及电子系统的阻性耦合影响[J]. 邮电设计技术,2007(3): 57-60. doi: 10.3969/j.issn.1007-3043.2007.03.013
GAO Youzang, SHEN Yuanmao, SHI Dan. Resistive coupling effects of AC electric railway to surrounding electric and electronic system[J]. Designing Techniques of Posts and Telecommunications, 2007(3): 57-60. doi: 10.3969/j.issn.1007-3043.2007.03.013
|
[15] |
蒋俊. 交流线路正常运行时对平行敷设油气管道的电磁影响[J]. 电网技术,2008,32(2): 78-80,92.
JIANG Jun. Electromagnetic influence of normally operating AC power transmission line on gas/oil pipeline parallel to transmission line[J]. Power System Technology, 2008, 32(2): 78-80,92.
|
[16] |
汪可. 电气化铁路对油气管道的影响及防护措施[D]. 成都: 西南交通大学,2013.
|
[17] |
YONG J, XIA B, YONG H, et al. Harmonic voltage induction on pipelines: measurement results and methods of assessment[C]//IEEE Transactions on Power Delivery. [S.l.]: IEEE, 2018: 2170-2179.
|
[18] |
陈民武,朱久国,解绍锋,等. 牵引供电系统对埋地管道阻性耦合交流干扰建模及仿真[J]. 中国铁道科学,2018,39(2): 80-86. doi: 10.3969/j.issn.1001-4632.2018.02.10
CHEN Minwu, ZHU Jiuguo, XIE Shaofeng, et al. Modeling and simulation of resistive coupling AC interference of traction power supply system to buried pipeline[J]. China Railway Science, 2018, 39(2): 80-86. doi: 10.3969/j.issn.1001-4632.2018.02.10
|
[19] |
盛望群. 基于CDEGS的交流电气化铁路对沿线油气管道电磁干扰影响研究[J]. 铁道科学与工程学报,2020,17(8): 2101-2108.
SHENG Wangqun. Study on influence of AC electrified railway on electromagnetic interference of oil and gas pipelines along the line based on CDEGS[J]. Journal of Railway Science and Engineering, 2020, 17(8): 2101-2108.
|
[20] |
CHARALAMBOUS C A, DEMETRIOU A, LAZARI A L, et al. Effects of electromagnetic interference on underground pipelines caused by the operation of high voltage AC traction systems: the impact of harmonics[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2664-2672. doi: 10.1109/TPWRD.2018.2803080
|
[21] |
齐磊,崔翔,郭剑,等. 特高压交流输电线路正常运行时对输油输气管道的感性耦合计算模型[J]. 中国电机工程学报,2010,30(21): 121-126.
QI Lei, CUI Xiang, GUO Jian, et al. Inductive coupling modelling of normally operating UHV AC transmission line to adjacent oil/gas pipeline[J]. Proceedings of the CSEE, 2010, 30(21): 121-126.
|
[22] |
国家质量监督检验检疫总局. 接地系统的土壤电阻率、接地阻抗和地面电位测量导则 第1部分:常规测量:GB/T 17949.1—2000[S]. 北京: 中国标准出版社,2000.
|
[23] |
解绍锋,孙镜堤,骆冰祥,等. 高速铁路对邻近普速铁路电力电缆的干扰机理[J]. 西南交通大学学报,2021,56(1): 206-213.
XIE Shaofeng, SUN Jingdi, LUO Bingxiang, et al. Mechanism of high-speed railway interference on power cables of adjacent normal-speed railway[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 206-213.
|
[24] |
周胜军,谈萌. 基于监测数据的高铁动车组谐波特性分析[J]. 电力科学与技术学报,2018,33(3): 128-133. doi: 10.3969/j.issn.1673-9140.2018.03.020
ZHOU Shengjun, TAN Meng. Harmonic characteristics analysis of electric multiple units in high-speed railway based on the monitoring data[J]. Journal of Electric Power Science and Technology, 2018, 33(3): 128-133. doi: 10.3969/j.issn.1673-9140.2018.03.020
|
[25] |
周秀荣. 电气化铁路对通信线路的干扰影响及防护措施[J]. 中国铁路,2007(6): 66-68. doi: 10.3969/j.issn.1001-683X.2007.06.017
|