• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
ZHAO Shanpeng, ZHANG Yongfeng, ZHANG Youpeng, WANG Sihua. Mechanical Characteristics of Low-Wind-Pressure Catenary Positive Feeder in Gale Area of Lanzhou‒Urumuqi High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1154-1161. doi: 10.3969/j.issn.0258-2724.20220437
Citation: ZHAO Shanpeng, ZHANG Yongfeng, ZHANG Youpeng, WANG Sihua. Mechanical Characteristics of Low-Wind-Pressure Catenary Positive Feeder in Gale Area of Lanzhou‒Urumuqi High-Speed Railway[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1154-1161. doi: 10.3969/j.issn.0258-2724.20220437

Mechanical Characteristics of Low-Wind-Pressure Catenary Positive Feeder in Gale Area of Lanzhou‒Urumuqi High-Speed Railway

doi: 10.3969/j.issn.0258-2724.20220437
  • Received Date: 20 Jun 2022
  • Rev Recd Date: 02 Oct 2022
  • Available Online: 14 Apr 2023
  • Publish Date: 12 Oct 2022
  • In order to restrain the galloping amplitude of the positive feeder in the gale area of the Lanzhou‒Urumuqi high-speed railway and ensure the safe operation of the train, firstly, a novel type of low-wind-pressure catenary positive feeder was designed, and the aerodynamic parameters and galloping amplitude of the conventional catenary positive feeder and the low-wind-pressure catenary positive feeder under different wind loads were simulated and compared. Then, a three-dimensional finite element model of the low-wind-pressure catenary positive feeders with the three better anti-galloping effects was established and tensile loads were applied to simulate the stress condition of the positive feeder when the positive feeders were galloping. Finally, the deformation and variation stress of the low-wind-pressure catenary positive feeder were analyzed. The results show that, the deformation of the free end of the catenary positive feeder is much larger than that of the fixed end, the deformation of the aluminum strand layer is larger than that of the steel strand layer, and the further to the outer layer, the larger the strand deformation, twining alternately steel and aluminum layers can be considered in the feeder manufacturing to balance the electroconductibility and rigidity. The stress concentration occurs at the location where the strands squeezing with each other, and the stress concentration position is the same as the direction of the strand twining with each other. A buffer layer should be considered on the surface of the strands during the positive feeder manufacturing, to mitigate oscillatory shock between the strands when the positive feeder galloping, and to prolong the service life of the positive feeder. The larger the ratio of the groove radius of the low-wind-pressure catenary positive feeder to the radius of the conventional feeder, the greater the deformation of the outermost aluminum strands, the strands are more likely to break when the positive feeder is galloping. Therefore, the type selection of low wind pressure positive feeder should be comprehensively considered to balance the anti-galloping effectiveness and the service life.

     

  • loading
  • [1]
    孟祥连,李鲲,谢胜波,等. 兰新高铁大风区风况特征及防风工程设计分区[J]. 中国沙漠,2018,38(5): 972-977.

    MENG Xianglian, LI Kun, XIE Shengbo, et al. Strong wind environmental characteristics and countermeasures according to engineering divisions along a high-speed railway[J]. Journal of Desert Research, 2018, 38(5): 972-977.
    [2]
    刘志刚,宋洋,刘煜铖. 电气化高速铁路接触网微风振动特性[J]. 西南交通大学学报,2015,50(1): 1-6. doi: 10.3969/j.issn.0258-2724.2015.01.001

    LIU Zhigang, SONG Yang, LIU Yucheng. Aeolian vibration characteristics of electrified high-speed railway catenary[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 1-6. doi: 10.3969/j.issn.0258-2724.2015.01.001
    [3]
    姚远,赵文彬,卢武,等. 多风速段下低风阻导线抗风能力实验分析及导线截面结构参数优化[J]. 电力系统保护与控制,2021,49(21): 97-106. doi: 10.19783/j.cnki.pspc.201629

    YAO Yuan, ZHAO Wenbin, LU Wu, et al. Wind resistance test and optimal design of cross-sectional structure of a drag-reduced conductor at multiple wind speed levels[J]. Power System Protection and Control, 2021, 49(21): 97-106. doi: 10.19783/j.cnki.pspc.201629
    [4]
    吴明埝,缪姚军,张军,等. 低风压导线流场仿真设计及应用[J]. 电线电缆,2020(5): 10-14,21. doi: 10.3969/j.issn.1672-6901.2020.05.003

    WU Mingnian, MIAO Yaojun, ZHANG Jun, et al. Flow field simulation design and application of drag reduced conductor[J]. Wire & Cable, 2020(5): 10-14,21. doi: 10.3969/j.issn.1672-6901.2020.05.003
    [5]
    段旭东,韩宇,陆春阳,等. 低风压导线与常规导线对比分析[J]. 电气工程学报,2019,14(4): 66-71. doi: 10.11985/2019.04.010

    DUAN Xudong, HAN Yu, LU Chunyang, et al. Comparative analysis of low wind pressure conductor and conventional conductor[J]. Journal of Electrical Engineering, 2019, 14(4): 66-71. doi: 10.11985/2019.04.010
    [6]
    刘鹏. 输电线路低风阻导线结构设计与研究[D]. 北京: 华北电力大学, 2017.
    [7]
    LÉVESQUE F, GOUDREAU S, CLOUTIER L, et al. Finite element model of the contact between a vibrating conductor and a suspension clamp[J]. Tribology International, 2011, 44(9): 1014-1023. doi: 10.1016/j.triboint.2011.04.006
    [8]
    PALO A. Transmission line reference book: wind induced conductor motion[M]. California: Electric Power Research Institute, 1979.
    [9]
    周超,陈作,李力,等. 基于有限元的低风压导线结构分析[J]. 图学学报,2018,39(1): 129-135. doi: 10.11996/JG.j.2095-302X.2018010129

    ZHOU Chao, CHEN Zuo, LI Li, et al. Analysis of low-wind-pressure conductor based on finite element[J]. Journal of Graphics, 2018, 39(1): 129-135. doi: 10.11996/JG.j.2095-302X.2018010129
    [10]
    刘阳,徐凯,郜宁,等. 强风区高压输电线路铝线夹疲劳断裂机制研究[J]. 武汉大学学报(工学版),2020,53(2): 176-182. doi: 10.14188/j.1671-8844.2020-02-012

    LIU Yang, XU Kai, GAO Ning, et al. Fatigue fracture mechanism of aluminum terminal connector for high voltage transmission line in strong wind area[J]. Engineering Journal of Wuhan University, 2020, 53(2): 176-182. doi: 10.14188/j.1671-8844.2020-02-012
    [11]
    司伟杰. 输电导线微风振动损伤机理及检测技术研究[D]. 西安: 西安工程大学, 2018.
    [12]
    仝步升. 架空输电线路微风振动监测与疲劳损伤计算[D]. 太原: 太原理工大学, 2013.
    [13]
    林建华,曾伟. 架空导线用钢芯铝绞线张力分层特性研究[J]. 电线电缆,2015(4): 30-33. doi: 10.3969/j.issn.1672-6901.2015.04.007

    LIN Jianhua, ZENG Wei. Research on aluminum conductor steel reinforced tension layered characteristics of overhead conductors[J]. Wire & Cable, 2015(4): 30-33. doi: 10.3969/j.issn.1672-6901.2015.04.007
    [14]
    HONG K J, DER KIUREGHIAN A, SACKMAN J L. Bending behavior of helically wrapped cables[J]. Journal of Engineering Mechanics, 2005, 131(5): 500-511. doi: 10.1061/(ASCE)0733-9399(2005)131:5(500)
    [15]
    祝贺, 袁鸣, 郭鑫. 温度影响下碳纤维导线分层力学特性有限元分析[J/OL]. 西南交通大学学报, (2022-03-31)[2022-06-02]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65IXe8xbsrGOBqwsuR8VxuP2PPs0V1tYS7DplaisN5YfIkYT3ZQRt-9&uniplatform=NZKPT
    [16]
    丁亮亮. 架空输电导线热应力分析与微风振动疲劳寿命研究[D]. 北京: 华北电力大学, 2019: 52-60.
    [17]
    黄欲成,陈池,汪峰,等. 大跨越架空输电导线钢芯铝股应力分布特性研究[J]. 三峡大学学报(自然科学版),2016,38(4): 76-81. doi: 10.13393/j.cnki.issn.1672-948X.2016.04.016

    HUANG Yucheng, CHEN Chi, WANG Feng, et al. Stress distribution characteristics of steel core and aluminum strand of large span overhead transmission line[J]. Journal of China Three Gorges University. (Natural Sciences), 2016, 38(4): 76-81. doi: 10.13393/j.cnki.issn.1672-948X.2016.04.016
    [18]
    段一锋,马行驰,高磊,等. 钢芯铝绞线微动损伤机理及防护措施的研究进展[J]. 材料导报,2018,32(增1): 37-40.

    DUAN Yifeng, MA Xingchi, GAO Lei, et al. Research on fretting damage mechanism and protective measures of aluminum cable steel reinforced[J]. Materials Review, 2018, 32(S1): 37-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(318) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return