• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332
Citation: MA Kaize, HAN Xiao, HE Tengwei, BAI Jingzhu. Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1132-1139. doi: 10.3969/j.issn.0258-2724.20220332

Investigation of FRP-Confined UHPC Circular Stub Columns Under Axial Compression

doi: 10.3969/j.issn.0258-2724.20220332
  • Received Date: 17 May 2022
  • Rev Recd Date: 26 Jul 2022
  • Available Online: 22 Nov 2023
  • Publish Date: 29 Aug 2022
  • In order to study the influences of the number of fiber reinforced polymer (FRP) layers, the type of FRP, and the volume of steel fiber on the axial compression performance of ultra-high performance concrete (UHPC) circular stub columns, 21 FRP-confined UHPC circular stub columns were tested under axial compression. The typical failure characteristics and stress mechanism of the specimens were analyzed. In addition, the influence of various parameters on the ultimate strength and ultimate strain of the specimens was studied. The experimental results show that the ultimate strength of UHPC circular stub columns can be improved by increasing the number of FRP layers. The ultimate strength of C12, C22, and C32 is 17.8%, 25.4%, and 23.4% higher than that of C11, C21, and C31, respectively. With the increase in the volume of steel fiber, the ultimate strength and ultimate strain, and the ductility of UHPC circular stub columns are improved. The ultimate strength and ultimate strain of C31 are increased by 2.9% and 15.1%, respectively, compared with C21, as well as 4.7% and 50%, respectively, compared with C11. Under the same FRP layers and volume of steel fiber, the improvement of the ultimate strength of confined UHPC circular stub columns by carbon fiber reinforced polymer (CFRP) is significantly better than that by glass fiber reinforced polymer (GFRP). The ultimate strength of C11, C12, and C13 is 9.7%, 7.8%, and 7.2% higher than that of G11, G12, and G13, respectively. In view of the constraint of the steel fiber, calculation models of compressive strength and ultimate strain of FRP-confined UHPC circular stub columns are proposed. Furthermore, the constitutive model of FRP-confined UHPC is given.

     

  • [1]
    MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263. doi: 10.1016/j.compstruct.2019.02.002
    [2]
    闫清峰,张纪刚. 纤维增强复合材料在土木工程中的应用与发展[J]. 科学技术与工程,2021,21(36): 15314-15322. doi: 10.3969/j.issn.1671-1815.2021.36.003

    YAN Qingfeng, ZHANG Jigang. Applications and development of fiber reinforced polymer in civil engineering[J]. Science Technology and Engineering, 2021, 21(36): 15314-15322. doi: 10.3969/j.issn.1671-1815.2021.36.003
    [3]
    王晖. 超高性能混凝土(UHPC)研究综述[J]. 混凝土与水泥制品,2022(4): 25-28.

    WANG Hui. Review of research on ultra-high performance concrete[J]. China Concrete and Cement Products, 2022(4): 25-28.
    [4]
    张云升,张文华,陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用[J]. 材料导报,2017,31(23): 1-16. doi: 10.11896/j.issn.1005-023X.2017.023.001

    ZHANG Yunsheng, ZHANG Wenhua, CHEN Zhenyu. A complete review of ultra-high performance concrete: design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Review, 2017, 31(23): 1-16. doi: 10.11896/j.issn.1005-023X.2017.023.001
    [5]
    梁旭宇,池寅,曾彦钦,等. GFRP管约束超高性能混凝土单轴受压应力-应变关系试验研究[J]. 武汉大学学报(工学版),2020,53(6): 498-506.

    LIANG Xuyu, CHI Yin, ZENG Yanqin, et al. Experimental studies on stress-strain relationship of ultra-high performance concrete confined by GFRP tube under uniaxial compression[J]. Engineering Journal of Wuhan University, 2020, 53(6): 498-506.
    [6]
    LAM L, HUANG L, XIE J H, et al. Compressive behavior of ultra-high performance concrete confined with FRP[J]. Composite Structures, 2021, 274: 114321.1-114321.15. doi: 10.1016/j.compstruct.2021.114321
    [7]
    GULER S. Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens[J]. Structural Engineering and Mechanics, 2014, 50(6): 709-722. doi: 10.12989/sem.2014.50.6.709
    [8]
    WANG W Q, WU C Q, LIU Z X, et al. Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP[J]. Composite Structures, 2018, 204: 419-437. doi: 10.1016/j.compstruct.2018.07.102
    [9]
    邓宗才,刘少新. FRP管约束超高性能混凝土的试验及理论研究[J]. 应用基础与工程科学学报,2016,24(4): 792-803.

    DENG Zongcai, LIU Shaoxin. Test and modeling of ultra-high performance concrete confined by fiber reinforced polymer tube[J]. Journal of Basic Science and Engineering, 2016, 24(4): 792-803.
    [10]
    邓宗才,王义超. FRP约束超高性能混凝土圆柱轴压本构模型[J]. 西南交通大学学报,2015,50(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011

    DENG Zongcai, WANG Yichao. Axial compression stress-strain model for UHPC cylinders confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 50(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011
    [11]
    黄美珍. 基于细观力学方法的超高性能混凝土轴压本构模型研究[D]. 福州: 福州大学, 2019.
    [12]
    田会文,周臻,陆纪平,等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报,2020,37(7): 1629-1638.

    TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638.
    [13]
    上海市建筑科学研究院有限公司. 超高性能混凝土试验方法标准: T/CECS864—2021[S]. 北京:中国建筑工业出版社, 2021.
    [14]
    中华人民共和国建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.
    [15]
    曹玉贵,李龙龙,谯理格. FRP约束橡胶混凝土的轴心受压承载力分析[J]. 江苏大学学报(自然科学版),2021,42(5): 616-620.

    CAO Yugui, LI Longlong, QIAO Lige. Analysis of axial compressive bearing capacity of FRP confined rubber concrete[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(5): 616-620.
    [16]
    李稳. FRP-混凝土界面破坏行为的断裂力学分析[D]. 广州: 华南理工大学, 2020.
    [17]
    TANG W S, LIU Z Z, LU Y Y, et al. Hybrid confinement mechanism of large-small rupture strain FRP on concrete cylinder[J]. Journal of Building Engineering, 2022, 51: 104335.1-104335.20.
    [18]
    HOSINIEH M M, AOUDE H, COOK W D, et al. Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading[J]. Engineering Structures, 2015, 99: 388-401. doi: 10.1016/j.engstruct.2015.05.009
    [19]
    ZOHREVAND P, MIRMIRAN A. Stress-strain model of ultrahigh performance concrete confined by fiber-reinforced polymers[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1822-1829. doi: 10.1061/(ASCE)MT.1943-5533.0000769
    [20]
    安凯旋,王旭月,刘中宪,等. 纤维布约束超高性能混凝土短柱轴压性能[J]. 建筑结构,2021,51(11): 129-135.

    AN Kaixuan, WANG Xuyue, LIU Zhongxian, et al. Study on axial compression performance research on UHPC short columns confined by fiber reinforced polymer[J]. Building Structure, 2021, 51(11): 129-135.
    [21]
    MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [22]
    LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17(6/7): 471-489.
  • Relative Articles

    [1]YUAN Weiguang, ZHAO Hua, MA Lan, XIAO Qiang, WEI Chengjin. Investigation on Seismic Performance of Concrete Short-Leg Shear Wall with High-Strength Steel Bars[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20230376
    [2]DENG Zongcai, WANG Tianyu. Axial Compression Performance of Concrete Columns Confined by Ultra-High Performance Concrete Reinforced with High-Strength Steel Wire Cloth[J]. Journal of Southwest Jiaotong University, 2025, 60(1): 72-82. doi: 10.3969/j.issn.0258-2724.20230096
    [3]ZHAO Haitao, DING Jian, YANG Guo, XIANG Yu, XU Wen, CHEN Yuzhi. Experimental Investigation of Relative Humidity Response in Early-Age Concrete Under Tensile Stress[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1104-1112. doi: 10.3969/j.issn.0258-2724.20220134
    [4]LI Jinhui, ZHANG Junqi, WEI Qiang, JIA Dapeng, GUO Dong, BAI Shi, OU Jinping. Loose Zone Identification for Surrounding Rock of Tunnels Using Self-Sensing Fiber Reinforced Plastic Anchors[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 11-19. doi: 10.3969/j.issn.0258-2724.20220003
    [5]CHEN Quansheng, HOU Shengjun, JIANG Chuanbin, JIANG Chenchen, YE Lingzhi, YANG Wanli. Experimental Study on Hydro-Abrasion Performance of Polyvinyl Alcohol Fiber Cementitious Composites[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 150-158. doi: 10.3969/j.issn.0258-2724.20210592
    [6]TANG Hongyuan, LIAO Jing, LIU Ruizhong, HU Xiaowei. Bearing Capacity of Concrete-Filled Double Skin Stub Columns with Square outer Stainless Steel tube Under Axial Compression[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 421-429. doi: 10.3969/j.issn.0258-2724.20210388
    [7]SHU Gang, ZHANG Qinghua, HUANG Yun, BU Yizhi. Micromechanical Analysis of Steel Fiber Corrosion in Ultra-high Performance Concrete[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1268-1276. doi: 10.3969/j.issn.0258-2724.20170453
    [8]WANG Hailong, LUO Yuejing, PENG Guangyu, SUN Xiaoyan, YING Qiming. Effect of Admixtures on Tensile Behavior of Fiber Reinforced Cementitious Composites[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 61-68. doi: 10.3969/j.issn.0258-2724.2017.01.009
    [9]DENG Zongcai, WANG Yichao. Axial Compression Stress-Strain Model for UHPC Cylinders Confined by FRP[J]. Journal of Southwest Jiaotong University, 2015, 28(4): 641-647. doi: 10.3969/j.issn.0258-2724.2015.04.011
    [10]CHEN Xiaolang, SUN Zhidan, MA Yonghong, ZHANG Zhibin, YU Jie. Effect of Surface Treatment on Properties of HDPE/EVA/EG Composites[J]. Journal of Southwest Jiaotong University, 2014, 27(6): 1097-1101. doi: 10.3969/j.issn.0258-2724.2014.06.024
    [11]XIANG Kai, WANG Guohui. Fire Resistance Performance of Concrete-Filled Steel Tube RC Square Columns under Axial Loading[J]. Journal of Southwest Jiaotong University, 2014, 27(5): 779-786. doi: 10.3969/j.issn.0258-2724.2014.05.006
    [12]XULi, JIANGXiao-yu, QIAN Lin-mao. Experimental Investigation onM echanicalProperties of Nano-Al2O3Coating on ResinM atrix Composites[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 347-350.
    [13]ZHANG Juan, GAO Qing, KANG Guo-zheng. ThermalResidual Stresses and Their Effects on Properties ofδ-Al2O3 Short Fiber Reinforced AlAlloy Composites[J]. Journal of Southwest Jiaotong University, 2005, 18(3): 351-354.
    [14]KANGGuo一zheng, CAOqing. ThermalResidualStressesinAlignedShortFiber ReinforcedMetalMatrixComPosites[J]. Journal of Southwest Jiaotong University, 2001, 14(4): 387-391.
    [15]KANG Guo-zheng, GAO Qing. The Effect of Fiber Aspect Ratio on the Mechanical Behavior of Aligned Short Fiber Composites[J]. Journal of Southwest Jiaotong University, 2000, 13(2): 188-191.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-062025-070102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 67.2 %META: 67.2 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %Seattle: 0.3 %Seattle: 0.3 %上海: 0.2 %上海: 0.2 %六安: 0.2 %六安: 0.2 %北京: 11.5 %北京: 11.5 %南京: 5.3 %南京: 5.3 %厦门: 0.2 %厦门: 0.2 %合肥: 0.7 %合肥: 0.7 %咸阳: 0.2 %咸阳: 0.2 %哥伦布: 1.2 %哥伦布: 1.2 %嘉兴: 0.2 %嘉兴: 0.2 %大庆: 0.7 %大庆: 0.7 %大连: 0.2 %大连: 0.2 %天津: 1.6 %天津: 1.6 %太原: 0.5 %太原: 0.5 %宁波: 0.2 %宁波: 0.2 %宜宾: 0.2 %宜宾: 0.2 %宜昌: 0.2 %宜昌: 0.2 %宣城: 0.5 %宣城: 0.5 %山景城: 0.2 %山景城: 0.2 %常德: 0.7 %常德: 0.7 %广州: 0.5 %广州: 0.5 %张家口: 4.1 %张家口: 4.1 %成都: 0.8 %成都: 0.8 %扬州: 0.3 %扬州: 0.3 %昆明: 0.8 %昆明: 0.8 %杭州: 0.7 %杭州: 0.7 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.3 %武汉: 0.3 %池州: 1.5 %池州: 1.5 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.2 %深圳: 0.2 %温州: 1.0 %温州: 1.0 %湘潭: 0.2 %湘潭: 0.2 %漯河: 2.1 %漯河: 2.1 %漳州: 0.3 %漳州: 0.3 %珠海: 0.2 %珠海: 0.2 %盐城: 0.2 %盐城: 0.2 %石家庄: 4.3 %石家庄: 4.3 %秦皇岛: 0.2 %秦皇岛: 0.2 %芒廷维尤: 19.8 %芒廷维尤: 19.8 %芝加哥: 0.2 %芝加哥: 0.2 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.2 %衡阳: 0.2 %西宁: 22.2 %西宁: 22.2 %西安: 1.5 %西安: 1.5 %诺沃克: 2.3 %诺沃克: 2.3 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.8 %运城: 0.8 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.7 %郑州: 0.7 %重庆: 0.2 %重庆: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 1.8 %长沙: 1.8 %阿德莱德: 0.3 %阿德莱德: 0.3 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %青岛: 0.3 %青岛: 0.3 %黄石: 0.2 %黄石: 0.2 %其他Seattle上海六安北京南京厦门合肥咸阳哥伦布嘉兴大庆大连天津太原宁波宜宾宜昌宣城山景城常德广州张家口成都扬州昆明杭州格兰特县武汉池州洛阳济南深圳温州湘潭漯河漳州珠海盐城石家庄秦皇岛芒廷维尤芝加哥衡水衡阳西宁西安诺沃克贵阳运城邯郸郑州重庆长春长沙阿德莱德雷德蒙德青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(407) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return