• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HAN Jialin, GAO Hongli, GUO Liang, LIU Xue, WU Tingting, LI Shichao. Bearing Fault Diagnosis Method Based on Order Tracking Without Rotational Speed[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 220-228. doi: 10.3969/j.issn.0258-2724.20220116
Citation: HAN Jialin, GAO Hongli, GUO Liang, LIU Xue, WU Tingting, LI Shichao. Bearing Fault Diagnosis Method Based on Order Tracking Without Rotational Speed[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 220-228. doi: 10.3969/j.issn.0258-2724.20220116

Bearing Fault Diagnosis Method Based on Order Tracking Without Rotational Speed

doi: 10.3969/j.issn.0258-2724.20220116
  • Received Date: 15 Feb 2022
  • Rev Recd Date: 04 Jul 2022
  • Available Online: 13 Jan 2023
  • Publish Date: 05 Aug 2022
  • The variable operating speed of mechanical equipment bearings leads to blurred spectrum of vibration monitoring signals, which to some extent affects the accuracy of bearing fault diagnosis. The current tacholess order tracking technology works well when the rotational speed fluctuation is small and the rotational frequency harmonics do not overlap, but it is difficult to conduct analysis when the bearing rotational frequency harmonics overlap. Aiming at the above problems, this paper proposes a tacholess order tracking fault diagnosis method of bearings based on the generalized demodulation. First, the generalized Fourier transform and the improved cost function-based ridge extraction technology are used to accurately extract the rotational frequency harmonic components of the bearings. At the same time, the fast spectral kurtosis algorithm and a band-pass filter are used to de-noise the bearing vibration signal. Then, the denoised time-domain signal is converted into an angular-domain signal through angle resampling. Finally, the order spectrum information of the bearing is obtained through the envelope spectrum analysis, so as to identify the fault type of the bearing. In addition, the effectiveness of the proposed method is verified using the numerical simulation signal and the actual bearing monitoring signal. The results show that the proposed method has an error of less than 5% in reconstructing the phase and an accuracy of more than 94% in characterizing the order frequency of bearing faults, which can be used for the order tracking fault diagnosis of rolling bearings without rotational speed information.

     

  • loading
  • [1]
    ZHAO M, LIN J, XU X, et al. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds[J]. Sensors, 2013, 13(8): 10856-10875. doi: 10.3390/s130810856
    [2]
    RANDALL R B, ANTONI J. Rolling element bearing diagnostics—a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2): 485-520. doi: 10.1016/j.ymssp.2010.07.017
    [3]
    郭瑜,秦树人,梁玉前. 时频分析阶比跟踪技术[J]. 重庆大学学报(自然科学版),2002,25(5): 17-20,24.

    GUO Yu, QIN Shuren, LIANG Yuqian. Order tracking method based on time-frequency analysis[J]. Journal of Chongqing University (Natural Science Edition), 2002, 25(5): 17-20,24.
    [4]
    张亢,程军圣. 基于LMD和阶次跟踪分析的滚动轴承故障诊断[J]. 振动.测试与诊断,2016,36(3): 586-591,611.

    ZHANG Kang, CHENG Junsheng. Roller bearing fault diagnosis based on LMD and order tracking analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(3): 586-591,611.
    [5]
    SCHMIDT S, HEYNS P S, DE VILLIERS J P. A tacholess order tracking methodology based on a probabilistic approach to incorporate angular acceleration information into the maxima tracking process[J]. Mechanical Systems and Signal Processing, 2018, 100: 630-646. doi: 10.1016/j.ymssp.2017.07.053
    [6]
    汤宝平,何启源,魏玉果,等. 基于角加速度的复合计算阶次跟踪方法[J]. 机械工程学报,2008,44(8): 143-147. doi: 10.3321/j.issn:0577-6686.2008.08.025

    TANG Baoping, HE Qiyuan, WEI Yuguo, et al. Hybrid computed order tracking method based on angular acceleration[J]. Chinese Journal of Mechanical Engineering, 2008, 44(8): 143-147. doi: 10.3321/j.issn:0577-6686.2008.08.025
    [7]
    WU J, ZI Y Y, CHEN J L, et al. A modified tacho-less order tracking method for the surveillance and diagnosis of machine under sharp speed variation[J]. Mechanism and Machine Theory, 2018, 128: 508-527. doi: 10.1016/j.mechmachtheory.2018.06.016
    [8]
    HOU B C, WANG Y, TANG B P, et al. A tacholess order tracking method for wind turbine planetary gearbox fault detection[J]. Measurement, 2019, 138: 266-277. doi: 10.1016/j.measurement.2019.02.010
    [9]
    ZHAO M, LIN J, WANG X F, et al. A tacho-less order tracking technique for large speed variations[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 76-90. doi: 10.1016/j.ymssp.2013.03.024
    [10]
    QI X X, YUAN Z H, HAN X W. Diagnosis of misalignment faults by tacholess order tracking analysis and RBF networks[J]. Neurocomputing, 2015, 169: 439-448. doi: 10.1016/j.neucom.2014.09.088
    [11]
    GRYLLIAS K C, ANTONIADIS I A. Estimation of the instantaneous rotation speed using complex shifted Morlet wavelets[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 78-95. doi: 10.1016/j.ymssp.2012.06.026
    [12]
    BONNARDOT F, BADAOUI M E, RANDALL R B, et al. Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation)[J]. Mechanical Systems and Signal Processing, 2005, 19(4): 766-785. doi: 10.1016/j.ymssp.2004.05.001
    [13]
    COMBET F, GELMAN L. An automated methodology for performing time synchronous averaging of a gearbox signal without speed sensor[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2590-2606. doi: 10.1016/j.ymssp.2006.12.006
    [14]
    HEYNS T, HEYNS P S, ZIMROZ R. Combining discrepancy analysis with sensorless signal resampling for condition monitoring of rotating machines under uctuating operations[J]. International Journal of Condition Monitoring, 2012, 2(2): 52-58. doi: 10.1784/204764212804729714
    [15]
    WANG Y, XU G H, LUO A L, et al. An online tacholess order tracking technique based on generalized demodulation for rolling bearing fault detection[J]. Journal of Sound and Vibration, 2016, 367: 233-249. doi: 10.1016/j.jsv.2015.12.041
    [16]
    RANDALL R B, SAWALHI N, COATS M. Separation of gear and bearing fault signals from a wind turbine transmission under varying speed and load[M]. Berlin: Springer, 2012.
    [17]
    赵明. 变转速下机械动态信息的自适应提取与状态评估[D]. 西安: 西安交通大学, 2017.
    [18]
    LIU H, CARTWRIGHT A N, BASARAN C. Moiré interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms[J]. Applied Optics, 2004, 43(4): 850-857. doi: 10.1364/AO.43.000850
    [19]
    LIU S, CHEN J L, HE S L, et al. Subspace network with shared representation learning for intelligent fault diagnosis of machine under speed transient conditions with few samples[J]. ISA Transactions, 2022, 128: 531-544. doi: 10.1016/j.isatra.2021.10.025
    [20]
    SHI Z, CHEN J L, ZI Y Y, et al. A novel multitask adversarial network via redundant lifting for multicomponent intelligent fault detection under sharp speed variation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article views(432) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return