Citation: | LU Gongyuan, HU Liuyang, PENG Hui, ZHANG Hongxiang, ZHANG Shoushuai. Method for Compressing Departure Tracking Interval of High-Speed Trains Based on Pre-departure Strategy[J]. Journal of Southwest Jiaotong University, 2024, 59(6): 1368-1377. doi: 10.3969/j.issn.0258-2724.20220064 |
The departure tracking interval is one of the main bottlenecks that limit the 3-minute tracking operation of trains, and compressing the departure tracking interval can effectively improve line capacity. The departure tracking process of high-speed trains was first analyzed, and a pre-departure annunciator was set at a certain distance inside the outbound annunciator, making the train have a certain initial speed and shortening the remaining outbound distance when the outbound annunciator was open. At the same time, the principle of “failure-oriented safety” for the pre-departure process was put forward to ensure that the train did not cross the outbound annunciator. Then, based on the analysis of factors affecting the compression of departure tracking interval, the curves of train control mode under different pre-departure schemes were studied. Finally, the high-speed yard of Shanghai Hongqiao Station was studied, and the results show that the departure tracking interval can be compressed by the proposed method. The compression effect increases first and then decreases with the increase in the pre-departure distance, and the maximum compressible departure tracking interval can be more than 26 s if the pre-departure distance reaches 200 m of the effective lengths of the arrival-departure track.
[1] |
胡志垚. 进路分段办理压缩大型客站发车追踪间隔时间[J]. 交通科技与经济,2018,20(3): 23-27,65.
HU Zhiyao. Compressing departure tracking interval of large passenger railway station with departure route subsection[J]. Technology & Economy in Areas of Communications, 2018, 20(3): 23-27,65.
|
[2] |
SHANGGUAN W, YAN X H, CAI B G, et al. Multiobjective optimization for train speed trajectory in CTCS high-speed railway with hybrid evolutionary algorithm[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2215-2225. doi: 10.1109/TITS.2015.2402160
|
[3] |
YAN X H, CAI B G, NING B, et al. Moving horizon optimization of dynamic trajectory planning for high-speed train operation[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1258-1270. doi: 10.1109/TITS.2015.2499254
|
[4] |
GAO S L, ZHENG Y S. Adjustment of train interval time based on dynamic programming algorithm[C]// 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE). Lanzhou: IEEE, 2018: 106-110.
|
[5] |
WAGTER W. Block sections around stations under ETCS: the effect of the block layout on the headways at stations[D]. Enschede:Enschede University of Twente, 2019.
|
[6] |
VIGNALI V, CUPPI F, LANTIERI C, et al. A methodology for the design of sections block length on ETCS L2 railway networks[J]. Journal of Rail Transport Planning & Management, 2020, 13: 100160.1-100160.22.
|
[7] |
田长海,张守帅,张岳松,等. 高速铁路列车追踪间隔时间研究[J]. 铁道学报,2015,37(10): 1-6.
TIAN Changhai, ZHANG Shoushuai, ZHANG Yuesong, et al. Study on the train headway on automatic block sections of high speed railway[J]. Journal of the China Railway Society, 2015, 37(10): 1-6.
|
[8] |
彭其渊,王超宇,鲁工圆. 基于到发线运用方案的列车到达追踪间隔时间压缩方法及仿真研究[J]. 中国铁道科学,2020,41(2): 131-138.
PENG Qiyuan, WANG Chaoyu, LU Gongyuan. Compression method and simulation of train arrival interval based on utilization of arrival-departure track[J]. China Railway Science, 2020, 41(2): 131-138.
|
[9] |
鲁工圆,沈子力,彭其渊,等. 基于区间速度控制的列车到达追踪间隔时间压缩方法研究[J]. 铁道学报,2021,43(1): 19-27.
LU Gongyuan, SHEN Zili, PENG Qiyuan, et al. Compressing arrival interval of high-speed trains by speed control within railway section[J]. Journal of the China Railway Society, 2021, 43(1): 19-27.
|
[10] |
鲁工圆,王超宇,沈子力,等. 面向追踪间隔压缩的高速铁路列车运行时空轨迹优化[J]. 铁道学报,2021,43(7): 10-18.
LU Gongyuan, WANG Chaoyu, SHEN Zili, et al. Headway compression oriented space-time trajectory optimization for high-speed railway trains[J]. Journal of the China Railway Society, 2021, 43(7): 10-18.
|
[11] |
TAKAGI R. Synchronisation control of trains on the railway track controlled by the moving block signalling system[J]. IET Electrical Systems in Transportation, 2012, 2(3): 130-138. doi: 10.1049/iet-est.2011.0053
|
[12] |
张婷. 通过提高列车出站速度压缩高速铁路列车发车追踪间隔时间[J]. 价值工程,2018,37(3): 34-36.
ZHANG Ting. Compress the tracing interval of high-speed railway trains by increasing train outbound speed[J]. Value Engineering, 2018, 37(3): 34-36.
|
[13] |
聂英杰,胡志垚. 京沪高速铁路北京南站发车追踪间隔研究[J]. 铁道运输与经济,2018,40(11): 28-31.
NIE Yingjie, HU Zhiyao. A study on departure headway interval of Beijing South Railway Station of Beijing–Shanghai high-speed railway[J]. Railway Transport and Economy, 2018, 40(11): 28-31.
|
[14] |
朱子轩. 高速铁路列车追踪间隔时间压缩策略仿真分析研究[D]. 成都: 西南交通大学,2019.
|
[15] |
张岳松,田长海,姜昕良,等. 高速铁路列车间隔时间的计算方法[J]. 中国铁道科学,2013,34(5): 120-125.
ZHANG Yuesong, TIAN Changhai, JIANG Xinliang, et al. Calculation method for train headway of high speed railway[J]. China Railway Science, 2013, 34(5): 120-125.
|
[16] |
中国铁路总公司. CRH系列动车组操作规则:TG/JW105—2015[S]. 北京: 中国铁路总公司,2015.
|
[17] |
赵博. 高铁车站出站信号机与停车标设置方案探讨[J]. 铁道工程学报,2018,35(10): 69-72.
ZHAO Bo. Research on the setting scheme of starting signal and train stop sign on high speed railway station[J]. Journal of Railway Engineering Society, 2018, 35(10): 69-72.
|