• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHU Honglin, SONG Shuai, WU Yudong, YANG Mingliang, SHUI Yongbo, DING Weiping. Evaluation of Vehicle Road Impact Sound Quality Based on Time-Frequency Perception Weighting[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 296-303. doi: 10.3969/j.issn.0258-2724.20211060
Citation: ZHU Honglin, SONG Shuai, WU Yudong, YANG Mingliang, SHUI Yongbo, DING Weiping. Evaluation of Vehicle Road Impact Sound Quality Based on Time-Frequency Perception Weighting[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 296-303. doi: 10.3969/j.issn.0258-2724.20211060

Evaluation of Vehicle Road Impact Sound Quality Based on Time-Frequency Perception Weighting

doi: 10.3969/j.issn.0258-2724.20211060
  • Received Date: 24 Dec 2021
  • Rev Recd Date: 06 Apr 2022
  • Available Online: 03 Jan 2023
  • Publish Date: 11 Apr 2022
  • In order to characterize and quantify a person’s subjective perception of road impact sound, firstly, the acoustic time perception duration of the impact non-stationary noise signal of the speed bump condition was defined, and the acoustic time history was divided into the impact section, the peak section and the attenuation section according to the discernibility of the human ear. The main impact and multiple micro-impact feature information of the impact noise were extracted by the wavelet transforms, and the feature information was used to form the basic feature matrix for impact sound quality evaluation. Then, the frequency domain filter factor was defined by referring to the crest factor method, and the time-varying perceptual weighting coefficient was determined based on the sequence relation analysis method, and the time-frequency filter network was established to weight the basic feature matrix and establish the impact sound quality evaluation index. Finally, based on the test data of the impact noise of the actual vehicle driving through the speed bump, the sound quality index was calculated, and comparative verification was carried out. The results show that the correlation coefficient between the proposed time-frequency perception weighted evaluation index and subjective evaluation is 0.927 at 20 km/h and 0.922 at 30 km/h. When considering the road impact acoustic time history evaluation, the correlation coefficient between the classic sound quality evaluation index(characteristic frequency band time-varying loudness) and subjective evaluation is 0.933 at 20 km/h and 0.649 at 30 km/h. The proposed time-frequency perception weighted evaluation method has good applicability for the conditions of 20 km/h and 30 km/h.

     

  • loading
  • [1]
    徐中明,周小林,张芳,等. Moore响度在车内噪声分析中的应用[J]. 振动与冲击,2013,32(1): 169-173. doi: 10.3969/j.issn.1000-3835.2013.01.035

    XU Zhongming, ZHOU Xiaolin, ZHANG Fang, et al. Application of Moore loudness in a vehicle interior noise analysis[J]. Journal of Vibration and Shock, 2013, 32(1): 169-173. doi: 10.3969/j.issn.1000-3835.2013.01.035
    [2]
    韩雪,朴胜春,付金山. 舰船辐射噪声听觉节奏的时变响度特征提取[J]. 哈尔滨工程大学学报,2020,41(4): 487-492. doi: 10.11990/jheu.201904011

    HAN Xue, PIAO Shengchun, FU Jinshan. Time-varying loudness feature extraction of the audition rhythm of ship radiation noise[J]. Journal of Harbin Engineering University, 2020, 41(4): 487-492. doi: 10.11990/jheu.201904011
    [3]
    The British Standards Institution. Acoustics-methods for calculating loudness part 1 Zwicker method: BS ISO 532-1[S]. [S.l.]: BSI Standards Limited, 2017.
    [4]
    周明刚,董琦飞,刘阳,等. Zwicker时变响度的一种计算方法[J]. 中国机械工程,2014,25(22): 3073-3076. doi: 10.3969/j.issn.1004-132X.2014.22.017

    ZHOU Minggang, DONG Qifei, LIU Yang, et al. A calculation method of zwicker time-varying loudness[J]. China Mechanical Engineering, 2014, 25(22): 3073-3076. doi: 10.3969/j.issn.1004-132X.2014.22.017
    [5]
    MOORE B C J, GLASBERG B R, VARATHANATHAN A, et al. A loudness model for time-varying sounds incorporating binaural inhibition[J]. Trends in Hearing, 2016, 20: 2331216516682698.1-2331216516682698.16.
    [6]
    MOORE B C J, JERVIS M, HARRIES L, et al. Testing and refining a loudness model for time-varying sounds incorporating binaural inhibition[J]. The Journal of the Acoustical Society of America, 2018, 143(3): 1504-1513. doi: 10.1121/1.5027246
    [7]
    The British Standards Institution. Acoustics-methods for calculating loudness part 2 moore-glasberg method: BS ISO 532-2[S]. [S.l.]: BSI Standards Limited, 2017
    [8]
    张觉慧,张立军,于佳. 汽车时变噪声的响度计算模型适用性分析[J]. 同济大学学报(自然科学版),2010,38(9): 1345-1349. doi: 10.3969/j.issn.0253-374x.2010.09.017

    ZHANG Juehui, ZHANG Lijun, YU Jia. Applicability of different loudness models to time-varying sound of vehicle[J]. Journal of Tongji University (Natural Science), 2010, 38(9): 1345-1349. doi: 10.3969/j.issn.0253-374x.2010.09.017
    [9]
    刘红星,吴九汇,张俊,等. 基于时频域分形维数差的声品质评价新方法[J]. 噪声与振动控制,2018,38(增2): 526-531.

    LIU Hongxing, WU Jiuhui, ZHANG Jun, et al. A new sound quality evaluation approach based on time-frequency domain fractal dimension difference[J]. Noise and Vibration Control, 2018, 38(S2): 526-531.
    [10]
    KIM H W, LEE S K, NA E W. Sound quality evaluation of the impact noise induced by road courses having an impact bar and speed bumps in a passenger car[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2010, 224(6): 735-747. doi: 10.1243/09544070JAUTO1296
    [11]
    夏小均,徐中明,严涛,等. 基于小波熵的非稳态声品质评价参数研究[J]. 振动与冲击,2016,35(14): 83-89. doi: 10.13465/j.cnki.jvs.2016.14.013

    XIA Xiaojun, XU Zhongming, YAN Tao, et al. Sound metric of unsteady acoustic signal based on wavelet entropy[J]. Journal of Vibration and Shock, 2016, 35(14): 83-89. doi: 10.13465/j.cnki.jvs.2016.14.013
    [12]
    LIANG L Y, CHEN S M, LI P R. The evaluation of vehicle interior impact noise inducing by speed bumps based on multi-features combination and support vector machine[J]. Applied Acoustics, 2020, 163: 107212.1-107212.21.
    [13]
    黄海波,黄晓蓉,苏瑞强,等. 基于EEMD与GA-小波神经网络的传动系声品质预测[J]. 振动与冲击,2017,36(9): 130-137. doi: 10.13465/j.cnki.jvs.2017.09.020

    HUANG Haibo, HUANG Xiaorong, SU Ruiqiang, et al. Sound metric prediction of a power train system based on EEMD and GA-wavelet neural network[J]. Journal of Vibration and Shock, 2017, 36(9): 130-137. doi: 10.13465/j.cnki.jvs.2017.09.020
    [14]
    边姜,段向雷,李贝. 基于Hilbert变换的车辆过坎振动衰减评价方法[J]. 汽车工程学报,2019,9(5): 327-331.

    BIAN Jiang, DUAN Xianglei, LI Bei. Evaluation of vehicle vibration attenuation when passing over speed bumps based on Hilbert transform[J]. Chinese Journal of Automotive Engineering, 2019, 9(5): 327-331.
    [15]
    蒋淑霞,罗意平. 基于小波阈值去噪与二次经验模态分解的发动机点火波形分析方法[J]. 汽车工程,2015,37(4): 380-386. doi: 10.3969/j.issn.1000-680X.2015.04.002

    JIANG Shuxia, LUO Yiping. An analysis method for engine ignition waveform based on wavelet threshold denoising and secondary empirical mode decomposition[J]. Automotive Engineering, 2015, 37(4): 380-386. doi: 10.3969/j.issn.1000-680X.2015.04.002
    [16]
    张迅,赵宇,阮灵辉,等. 基于小波变换分析箱梁振动噪声的时频特性[J]. 西南交通大学学报,2020,55(1): 109-117. doi: 10.3969/j.issn.0258-2724.20170768

    ZHANG Xun, ZHAO Yu, RUAN Linghui, et al. Time-frequency characteristics of box-girder vibration and noise based on wavelet transform[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 109-117. doi: 10.3969/j.issn.0258-2724.20170768
    [17]
    康诺华. 实用非参数统计[M]. 3版. 北京: 人民邮电出版社, 2006: 381-382.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views(385) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return