• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Mingjin, XING Longfei, JIANG Fanying, ZHANG Jinxiang, LI Yongle. Numerical Simulation of Mean Wind Characteristics at Bridge Site in Funnel-Shaped Canyon Terrain[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 381-387. doi: 10.3969/j.issn.0258-2724.20211006
Citation: ZHANG Mingjin, XING Longfei, JIANG Fanying, ZHANG Jinxiang, LI Yongle. Numerical Simulation of Mean Wind Characteristics at Bridge Site in Funnel-Shaped Canyon Terrain[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 381-387. doi: 10.3969/j.issn.0258-2724.20211006

Numerical Simulation of Mean Wind Characteristics at Bridge Site in Funnel-Shaped Canyon Terrain

doi: 10.3969/j.issn.0258-2724.20211006
  • Received Date: 07 Dec 2021
  • Rev Recd Date: 12 May 2022
  • Available Online: 29 Nov 2022
  • Publish Date: 25 May 2022
  • Taking the mountainous terrain of the long-span suspension bridge as a typical example, the mean wind characteristics at bridge site in the mountainous terrain of a funnel-shaped canyon are studied, which provide a basis for the wind resistance design of large-span bridges in the funnel-shaped canyon area. Firstly, a numerical model of the actual terrain is established and 24 cases with different wind directions are analyzed by Fluent. Then, the simulation results are compared with the measured data to verify the resonableness of the numerical simulation. Finally, simulation results are used to explore the influence of the bridge location at the funnel-shaped canyon on mean wind velocity, wind attack angle, wind direction angle in different flow directions, and to analyze the characteristics of wind velocity distribution with different attack angles and vertical wind profiles at different locations. The research results show that there is an obvious canyon wind acceleration effect at the bridge site. The topography of funnel-shaped canyon shows weak disturbance and high directivity to the wind attack angle and wind direction angle in different flow directions at the bridge site in funnel-shaped canyon area, and the wind attack angle and wind direction angle are −5°–0° and 25°–30°, respectively. The wind velocity in the funnel-shaped canyon is more sensitive to the change of the attack angle.

     

  • loading
  • [1]
    吴联活,张明金,李永乐,等. 复杂山区地形桥址区风特性的数值模拟[J]. 西南交通大学学报,2019,54(5): 915-922.

    WU Lianhuo, ZHANG Mingjin, LI Yongle, et al. Numerical simulation of wind characteristics at bridge sites in complex mountainous terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922.
    [2]
    洪新民,郭文华,熊安平. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报(自然科学版),2017,37(5): 56-64. doi: 10.19721/j.cnki.1671-8879.2017.05.008

    HONG Xinmin, GUO Wenhua, XIONG Anping. Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 56-64. doi: 10.19721/j.cnki.1671-8879.2017.05.008
    [3]
    HU P, HAN Y, CAI C S, et al. Wind characteristics and flutter performance of a long-span suspension bridge located in a deep-cutting gorge[J]. Engineering Structures, 2021, 233: 111841.1-111841.15.
    [4]
    李永乐,遆子龙,汪斌,等. 山区Y形河口附近桥址区地形风特性数值模拟研究[J]. 西南交通大学学报,2016,51(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013

    LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013
    [5]
    靖洪淼,廖海黎,周强,等. 一种山区峡谷桥址区风场特性数值模拟方法[J]. 振动与冲击,2019,38(16): 200-207. doi: 10.13465/j.cnki.jvs.2019.16.029

    JING Hongmiao, LIAO Haili, ZHOU Qiang, et al. A numerical simulation method for wind field characteristics of mountainous valley at bridge site[J]. Journal of Vibration and Shock, 2019, 38(16): 200-207. doi: 10.13465/j.cnki.jvs.2019.16.029
    [6]
    李永乐,胡朋,蔡宪棠,等. 紧邻高陡山体桥址区风特性数值模拟研究[J]. 空气动力学学报,2011,29(6): 770-776. doi: 10.3969/j.issn.0258-1825.2011.06.014

    LI Yongle, HU Peng, CAI Xiantang, et al. Numerical simulation of wind characteristics above bridge site adjacent a high-steep mountain[J]. Acta Aerodynamica Sinica, 2011, 29(6): 770-776. doi: 10.3969/j.issn.0258-1825.2011.06.014
    [7]
    胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2): 231-238. doi: 10.7638/kqdlxxb-2011.0184

    HU Peng, LI Yongle, LIAO Haili. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica, 2013, 31(2): 231-238. doi: 10.7638/kqdlxxb-2011.0184
    [8]
    张亮亮,吴波,杨阳,等. 山区桥址处CFD计算域的选取方法[J]. 土木建筑与环境工程,2015,37(5): 11-17.

    ZHANG Liangliang, WU Bo, YANG Yang, et al. Method of setting up the wind field of a mountain bridge site[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(5): 11-17.
    [9]
    车凯,南硕,陈敏. 严寒及寒冷地区轨道交通高大厂房风幕阻风特性研究[J]. 暖通空调,2021,51(4): 18-22.

    CHE Kai, NAN Shuo, CHEN Min. Study on wind-resistance characteristics of wind curtains of rail transit tall workshops in severe cold and cold zones[J]. Heating Ventilating & Air Conditioning, 2021, 51(4): 18-22.
    [10]
    WANG L, CHEN X X, CHEN H. Research on wind barrier of canyon bridge-tunnel junction based on wind characteristics[J]. Advances in Structural Engineering, 2021, 24(5): 870-883. doi: 10.1177/1369433220971730
    [11]
    ZHANG M J, LI Y L, WANG B, et al. Numerical simulation of wind characteristics at bridge site considering thermal effects[J]. Advances in Structural Engineering, 2018, 21(9): 1313-1326. doi: 10.1177/1369433217742524
    [12]
    CHEN X Y, LIU Z W, WANG X G, et al. Experimental and numerical investigation of wind characteristics over mountainous valley bridge site considering improved boundary transition sections[J]. Applied Sciences, 2020, 10(3): 751.1-751.23.
    [13]
    沈炼,韩艳,蔡春声,等. 基于谐波合成法的大涡模拟脉动风场生成方法研究[J]. 湖南大学学报(自然科学版),2015,42(11): 64-71. doi: 10.16339/j.cnki.hdxbzkb.2015.11.029

    SHEN Lian, HAN Yan, CAI Chunsheng, et al. Research on generating method of fluctuating wind field of LES based on WAWS[J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 64-71. doi: 10.16339/j.cnki.hdxbzkb.2015.11.029
    [14]
    HU W C, YANG Q S, CHEN H P, et al. Wind field characteristics over hilly and complex terrain in turbulent boundary layers[J]. Energy, 2021, 224: 120070.1-120070.14.
    [15]
    吴广. 山区复杂地形下高墩多跨连续铁路钢桁梁桥的风场特性研究[J]. 铁道科学与工程学报,2019,16(1): 129-136. doi: 10.19713/j.cnki.43-1423/u.2019.01.018

    WU Guang. Numerical simulation of wind field for high-pier truss girder continuous bridges at complex terrain[J]. Journal of Railway Science and Engineering, 2019, 16(1): 129-136. doi: 10.19713/j.cnki.43-1423/u.2019.01.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views(435) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return