• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
SONG Shizhe, DONG Dawei, HUANG Yan, XU Fanghui, ZHANG Wei, YAN Bing. Vibration Energy Decoupling Method and Application for Flexible Double-Layer Vibration Isolation Systems[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 304-313. doi: 10.3969/j.issn.0258-2724.20210993
Citation: SONG Shizhe, DONG Dawei, HUANG Yan, XU Fanghui, ZHANG Wei, YAN Bing. Vibration Energy Decoupling Method and Application for Flexible Double-Layer Vibration Isolation Systems[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 304-313. doi: 10.3969/j.issn.0258-2724.20210993

Vibration Energy Decoupling Method and Application for Flexible Double-Layer Vibration Isolation Systems

doi: 10.3969/j.issn.0258-2724.20210993
  • Received Date: 30 Nov 2021
  • Rev Recd Date: 10 Mar 2022
  • Available Online: 10 Dec 2022
  • Publish Date: 17 Mar 2022
  • The original energy decoupling method is not suited to flexible double-layer vibration isolation systems, and therefore a multi-degree of freedom model is developed to represent the flexible characteristics of the equipment and intermediate mass. Then, on the basis of the model, a generalized elastic force is proposed to decouple the flexible vibration isolation system. The decoupling method is then extended to the study of flexible structures. Finally, using a two-layer vibration isolation system of a powertrain as an example, the method is adopted to evaluate the decoupling performance of the elastic mode of the frame. Finally, a vibration test was used to verify the effectiveness of this method. The results show that after the primary vertical frequency of the powerpack decreases from 12 Hz to 8 Hz, all of the modal frequencies of the system are reduced by different extents. The first two order frequencies of the rigid body vibration modes decreased by 50.00% and 49.98%, respectively. The elastic modal frequency of the frame has a greater impact because of its lower natural frequency compared with that of the diesel generator set. The elastic modal frequency of the frame decreased by 8.32%, and that of the diesel generator set decreased by 0.80%. In the elastic vibration mode vibration of the frame, the proportion of the elastic vibration energy of the frame could increase by 14.88%, and the proportion of the rigid body vibration energy could be reduced by 90.64%. Reducing the vertical frequency of the first stage vibration isolation system can improve the vibration decoupling effect and reduce the vibration transmission.

     

  • loading
  • [1]
    JIN X, CHEN K K, JI J T, et al. Intelligent vibration detection and control system of agricultural machinery engine[J]. Measurement, 2019, 145: 503-510. doi: 10.1016/j.measurement.2019.05.059
    [2]
    WANG M, HU Y Y, SUN Y, et al. An adjustable low-frequency vibration isolation Stewart platform based on electromagnetic negative stiffness[J]. International Journal of Mechanical Sciences, 2020, 181: 105714.14-105714.25.
    [3]
    SUN Y, GONG D, ZHOU J S, et al. Low frequency vibration control of railway vehicles based on a high static low dynamic stiffness dynamic vibration absorber[J]. Science China Technological Sciences, 2019, 62(1): 60-69. doi: 10.1007/s11431-017-9300-5
    [4]
    吕振华,范让林,冯振东. 汽车动力总成隔振悬置布置的设计思想论析[J]. 内燃机工程,2004,25(3): 37-43. doi: 10.3969/j.issn.1000-0925.2004.03.010

    LYU Zhenhua, FAN Ranglin, FENG Zhendong. A survey of design methods for automotive engine mounting system[J]. Chinese Internal Combustion Engine Engineering, 2004, 25(3): 37-43. doi: 10.3969/j.issn.1000-0925.2004.03.010
    [5]
    SHANGGUAN W B. Engine mounts and powertrain mounting systems: a review[J]. International Journal of Vehicle Design, 2009, 49(4): 237-258. doi: 10.1504/IJVD.2009.024956
    [6]
    CHO S. Configuration and sizing design optimisation of powertrain mounting systems[J]. International Journal of Vehicle Design, 2000, 24(1): 35-47.
    [7]
    WILLIAMS R, HENDERSON F, ALLMAN-WARD M, et al. Using an interactive NVH simulator for target setting and concept evaluation in a new vehicle programme[C]//SAE Technical Paper Series. Warrendale: SAE International, 2005: 2479.1-2479.12.
    [8]
    范让林,吕振华. 刚体-弹性支承系统振动解耦评价方法分析[J]. 工程力学,2006,23(7): 13-18. doi: 10.3969/j.issn.1000-4750.2006.07.003

    FAN Ranglin, LYU Zhenhua. Evaluation approaches of vibration-mode uncoupling for multi-dof rigid-body with elastic mounting system[J]. Engineering Mechanics, 2006, 23(7): 13-18. doi: 10.3969/j.issn.1000-4750.2006.07.003
    [9]
    HU J F, ZHU D D, CHEN J J, et al. Refined response axis decoupling axiom for a coupled vibrating system with spectrally-varying mount properties[J]. Journal of Vibration and Control, 2018, 24(15): 3233-3248. doi: 10.1177/1077546317735941
    [10]
    PARK J Y, SINGH R. Effect of non-proportional damping on the torque roll axis decoupling of an engine mounting system[J]. Journal of Sound and Vibration, 2008, 313(3/4/5): 841-857.
    [11]
    SHANGGUAN W B, LIU X A, LV Z P, et al. Design method of automotive powertrain mounting system based on vibration and noise limitations of vehicle level[J]. Mechanical Systems and Signal Processing, 2016, 76/77: 677-695. doi: 10.1016/j.ymssp.2016.01.009
    [12]
    陈俊,闫兵,董大伟,等. 子系统参数对双层隔振系统固有特性的影响[J]. 振动与冲击,2015,34(4): 110-116. doi: 10.13465/j.cnki.jvs.2015.04.019

    CHEN Jun, YAN Bing, DONG Dawei, et al. Effects of subsystem parameters on natural characteristics of a double-layer vibration isolation system[J]. Journal of Vibration and Shock, 2015, 34(4): 110-116. doi: 10.13465/j.cnki.jvs.2015.04.019
    [13]
    孙玉华,董大伟,闫兵,等. 双层隔振系统解耦优化研究[J]. 振动.测试与诊断,2014,34(2): 361-365,402.

    SUN Yuhua, DONG Dawei, YAN Bing, et al. Design and decoupling optimization of two-stage vibration isolation system[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(2): 361-365,402.
    [14]
    WANG Z, MAK C M. Optimization of geometrical parameters for periodical structures applied to floating raft systems by genetic algorithms[J]. Applied Acoustics, 2018, 129: 108-115. doi: 10.1016/j.apacoust.2017.07.018
    [15]
    WU K, LIU Z W, DING Q, et al. Vibration responses of rotor systems in diesel multiple units under dynamic spatial misalignments and base motions[J]. Journal of Sound and Vibration, 2021, 492: 115-127.
    [16]
    ZHOU H, LIU H, GAO P, et al. Optimization design and performance analysis of vehicle powertrain mounting system[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 1-13. doi: 10.1186/s10033-018-0219-4
    [17]
    EL HAFIDI A, MARTIN B, LOREDO A, et al. Vibration reduction on city buses: determination of optimal position of engine mounts[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2198-2209. doi: 10.1016/j.ymssp.2010.04.001
    [18]
    JIANG M, LIAO S S, GUO Y, et al. The improvement on vibration isolation performance of hydraulic excavators based on the optimization of powertrain mounting system[J]. Advances in Mechanical Engineering, 2019, 11(5): 86-102.
    [19]
    ANGROSCH B, PLÖCHL M, REINALTER W. Mode decoupling concepts of an engine mount system for practical application[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2015, 229(4): 331-343. doi: 10.1177/1464419314564020
    [20]
    胡金芳,陈无畏,叶先军. 计及弹性支撑的汽车动力总成悬置系统解耦研究[J]. 中国机械工程,2012,23(23): 2879-2885. doi: 10.3969/j.issn.1004-132X.2012.23.022

    HU Jinfang, CHEN Wuwei, YE Xianjun. Decoupling study of a powertrain mounting system with effect of a compliant base[J]. China Mechanical Engineering, 2012, 23(23): 2879-2885. doi: 10.3969/j.issn.1004-132X.2012.23.022
    [21]
    胡金芳. 计及弹性基础的动力总成悬置系统特性分析与解耦研究[D]. 合肥: 合肥工业大学, 2012.
    [22]
    吕振华,范让林. 动力总成-悬置系统振动解耦设计方法[J]. 机械工程学报,2005,41(4): 49-54. doi: 10.3321/j.issn:0577-6686.2005.04.010

    LYU Zhenhua, FAN Ranglin. Design method for vibration uncoupling of powerplantmounting system[J]. Chinese Journal of Mechanical Engineering, 2005, 41(4): 49-54. doi: 10.3321/j.issn:0577-6686.2005.04.010
    [23]
    童炜,侯之超. 关于动力总成悬置系统模态能量表达的一个注记[J]. 汽车工程,2013,35(3): 224-228. doi: 10.3969/j.issn.1000-680X.2013.03.006

    TONG Wei, HOU Zhichao. A note on the modal energy expressions for powertrain mounting systems[J]. Automotive Engineering, 2013, 35(3): 224-228. doi: 10.3969/j.issn.1000-680X.2013.03.006
    [24]
    闫兵, 贾尚帅, 王铁成. 内燃动车动力总成振动控制技术及其应用[M]. 成都: 西南交通大学出版社, 2020: 188-189.
    [25]
    周宇杰,雷刚,贺艳辉,等. 基于惯性参数的动力总成悬置系统解耦分析[J]. 噪声与振动控制,2017,37(6): 94-97. doi: 10.3969/j.issn.1006-1355.2017.06.019

    ZHOU Yujie, LEI Gang, HE Yanhui, et al. Decoupling analysis of powertrain mount systems based on inertial parameters[J]. Noise and Vibration Control, 2017, 37(6): 94-97. doi: 10.3969/j.issn.1006-1355.2017.06.019
    [26]
    铁道部标准所. 柴油机车车内设备机械振动烈度评定方法: GB/T 5913—1986 [S]. 北京: 中国标准出版社, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(463) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return