• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
Citation: WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932

Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure

doi: 10.3969/j.issn.0258-2724.20210932
  • Received Date: 23 Nov 2021
  • Rev Recd Date: 01 Jul 2022
  • Available Online: 23 Nov 2023
  • Publish Date: 13 Jul 2022
  • In order to simulate the motion process of the levitation system of high-speed maglev trains and analyze the system response under different conditions, it is necessary to establish a levitation system model and conduct controller design and simulation analysis. Firstly, the basic structure and working principle of the levitation system of high-speed maglev trains with the joint structure as the basis unit were introduced. The mathematical model of the levitation system under ideal conditions was derived through a mechanism analysis method. Then, the levitation system model was simplified reasonably, and a nominal controller was designed for the simplified model. Finally, the control effect of the nominal controller was verified through simulation, and the levitating and landing processes of the permanent magnet and electromagnetic hybrid levitation system under simulation and experimental conditions were compared. The results show that the variation of physical quantities such as levitation gap and levitation current obtained from the simulation coincides with the trend of the actual system, with an error of less than 5% during static levitation.

     

  • loading
  • [1]
    龚俊虎,谢海林,鄢巨平,等. 全速度谱系磁浮交通的技术发展与应用前景[J]. 城市轨道交通研究,2020,23(9): 61-64,69.

    GONG Junhu, XIE Hailin, YAN Juping, et al. Development and application prospect of full-speed spectrum maglev transportation technology[J]. Urban Mass Transit, 2020, 23(9): 61-64,69.
    [2]
    孙玉玲,秦阿宁,董璐. 全球磁浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展,2019,41(2): 109-119.

    SUN Yuling, QIN Aning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119.
    [3]
    JANIC M. Multicriteria evaluation of the high speed rail, transrapid maglev and hyperloop systems[J]. Transportation Systems and Technology, 2018, 4(4): 5-31. doi: 10.17816/transsyst2018445-31
    [4]
    HAN H S, KIM D S. Magnetic levitation: maglev technology and applications[M]. Dordrecht: Springer, 2016.
    [5]
    MEINS J, MILLER L, MAYER W J. The high speed Maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [6]
    LIU Z G, LONG Z Q, LI X L. Maglev trains: key underlying technologies[M]. Heidelberg: Springer, 2015
    [7]
    郝阿明. 常导高速磁浮列车悬浮导向系统关键控制技术研究[D]. 长沙: 国防科技大学, 2008.
    [8]
    WANG Z Q, LONG Z Q, LI X L. Levitation control of permanent magnet electromagnetic hybrid suspension maglev train[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2018, 232(3): 315-323. doi: 10.1177/1350650117713878
    [9]
    刘曰锋,李良杰,张丽,等. 基于虚拟样机技术的中低速磁浮列车运行平稳性仿真分析[J]. 智慧轨道交通,2022,59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012

    LIU Yuefeng, LI Liangjie, ZHANG Li, et al. Simulation analysis of running stability of medium and low speed maglev train based on virtual prototype technology[J]. Smart Rail Transit, 2022, 59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012
    [10]
    DOUGHERTY D, COOPER D. A practical multiple model adaptive strategy for multivariable model predictive control[J]. Control Engineering Practice, 2003, 11(6): 649-664. doi: 10.1016/S0967-0661(02)00170-3
    [11]
    SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235
    [12]
    XU Y S, LONG Z Q, ZHAO Z G, et al. Real-time stability performance monitoring and evaluation of maglev trains’ levitation system: a data-driven approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1912-1923. doi: 10.1109/TITS.2020.3029905
    [13]
    XU Y S, YIN S, DING S X, et al. Performance degradation monitoring and recovery of vision-based control systems[J]. IEEE Transactions on Control Systems Technology, 2021, 29(6): 2712-2719. doi: 10.1109/TCST.2020.3042883
    [14]
    LI J H, LI J, ZHOU D F, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951. doi: 10.1109/TIE.2014.2364788
    [15]
    SUN Y G, XU J Q, QIANG H Y, et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8589-8599. doi: 10.1109/TIE.2019.2891409
    [16]
    HERNÁNDEZ-GUZMÁN V M, SILVA-ORTIGOZA R. Current loops in a magnetic levitation system[J]. International Journal of Innovative Computing Information and Control, 2009, 5(5): 1275-1283.
    [17]
    OGATA K. Modern control engineering[M]. 5th ed. Boston: Prentice Hall, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(393) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return