• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
SHI Hongfu, DENG Zigang, HUANG Huan, ZHU Hanlin, XIANG Yuqing, ZHENG Jun, LIANG Le, YANG Jing. Design and Characteristics of Null-Flux Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 853-862. doi: 10.3969/j.issn.0258-2724.20211062
Citation: WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932

Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure

doi: 10.3969/j.issn.0258-2724.20210932
  • Received Date: 23 Nov 2021
  • Rev Recd Date: 01 Jul 2022
  • Available Online: 23 Nov 2023
  • Publish Date: 13 Jul 2022
  • In order to simulate the motion process of the levitation system of high-speed maglev trains and analyze the system response under different conditions, it is necessary to establish a levitation system model and conduct controller design and simulation analysis. Firstly, the basic structure and working principle of the levitation system of high-speed maglev trains with the joint structure as the basis unit were introduced. The mathematical model of the levitation system under ideal conditions was derived through a mechanism analysis method. Then, the levitation system model was simplified reasonably, and a nominal controller was designed for the simplified model. Finally, the control effect of the nominal controller was verified through simulation, and the levitating and landing processes of the permanent magnet and electromagnetic hybrid levitation system under simulation and experimental conditions were compared. The results show that the variation of physical quantities such as levitation gap and levitation current obtained from the simulation coincides with the trend of the actual system, with an error of less than 5% during static levitation.

     

  • [1]
    龚俊虎,谢海林,鄢巨平,等. 全速度谱系磁浮交通的技术发展与应用前景[J]. 城市轨道交通研究,2020,23(9): 61-64,69.

    GONG Junhu, XIE Hailin, YAN Juping, et al. Development and application prospect of full-speed spectrum maglev transportation technology[J]. Urban Mass Transit, 2020, 23(9): 61-64,69.
    [2]
    孙玉玲,秦阿宁,董璐. 全球磁浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展,2019,41(2): 109-119.

    SUN Yuling, QIN Aning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119.
    [3]
    JANIC M. Multicriteria evaluation of the high speed rail, transrapid maglev and hyperloop systems[J]. Transportation Systems and Technology, 2018, 4(4): 5-31. doi: 10.17816/transsyst2018445-31
    [4]
    HAN H S, KIM D S. Magnetic levitation: maglev technology and applications[M]. Dordrecht: Springer, 2016.
    [5]
    MEINS J, MILLER L, MAYER W J. The high speed Maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [6]
    LIU Z G, LONG Z Q, LI X L. Maglev trains: key underlying technologies[M]. Heidelberg: Springer, 2015
    [7]
    郝阿明. 常导高速磁浮列车悬浮导向系统关键控制技术研究[D]. 长沙: 国防科技大学, 2008.
    [8]
    WANG Z Q, LONG Z Q, LI X L. Levitation control of permanent magnet electromagnetic hybrid suspension maglev train[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2018, 232(3): 315-323. doi: 10.1177/1350650117713878
    [9]
    刘曰锋,李良杰,张丽,等. 基于虚拟样机技术的中低速磁浮列车运行平稳性仿真分析[J]. 智慧轨道交通,2022,59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012

    LIU Yuefeng, LI Liangjie, ZHANG Li, et al. Simulation analysis of running stability of medium and low speed maglev train based on virtual prototype technology[J]. Smart Rail Transit, 2022, 59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012
    [10]
    DOUGHERTY D, COOPER D. A practical multiple model adaptive strategy for multivariable model predictive control[J]. Control Engineering Practice, 2003, 11(6): 649-664. doi: 10.1016/S0967-0661(02)00170-3
    [11]
    SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235
    [12]
    XU Y S, LONG Z Q, ZHAO Z G, et al. Real-time stability performance monitoring and evaluation of maglev trains’ levitation system: a data-driven approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1912-1923. doi: 10.1109/TITS.2020.3029905
    [13]
    XU Y S, YIN S, DING S X, et al. Performance degradation monitoring and recovery of vision-based control systems[J]. IEEE Transactions on Control Systems Technology, 2021, 29(6): 2712-2719. doi: 10.1109/TCST.2020.3042883
    [14]
    LI J H, LI J, ZHOU D F, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951. doi: 10.1109/TIE.2014.2364788
    [15]
    SUN Y G, XU J Q, QIANG H Y, et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8589-8599. doi: 10.1109/TIE.2019.2891409
    [16]
    HERNÁNDEZ-GUZMÁN V M, SILVA-ORTIGOZA R. Current loops in a magnetic levitation system[J]. International Journal of Innovative Computing Information and Control, 2009, 5(5): 1275-1283.
    [17]
    OGATA K. Modern control engineering[M]. 5th ed. Boston: Prentice Hall, 2010.
  • Relative Articles

    [1]ZHAO Chunfa, LI Yuhan, Peng Yeye, YANG Jing, NING Xiaofang, FENG Yang. Aerodynamic Characteristics of Open Wire of Superconducting Maglev Train and Its Influence on Levitation State[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240470
    [2]BI Jingguo, KE Zhihao, YANG Yiying, LI Zhengyan, DENG Zigang. Lateral Control of Permanent Magnet Electrodynamic Suspension Vehicle Based on Improved Nonlinear Model Predictive Controller[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20240494
    [3]JIN Junjie, WANG Yanfeng, XU Chengcheng, LU Wenxuan, ZHANG Xiaoyou, SUN Feng, XU Fangchao. Design and Magnetic Force Characteristic Analysis of Magnetic Levitation Bearing for Artificial Kidney Pumps[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 795-803. doi: 10.3969/j.issn.0258-2724.20230090
    [4]ZHAO Chunfa, LIU Haodong, FENG Yang, LUO Shihui, SONG Xiaolin. Magnetic Force Characteristics Between On-Board Permanent Magnet and Permanent Magnetic Rail Considering Five Pose Parameters[J]. Journal of Southwest Jiaotong University, 2024, 59(4): 804-811. doi: 10.3969/j.issn.0258-2724.20240049
    [5]HU Yongpan, ZENG Jiewei, WANG Zhiqiang, LONG Zhiqiang. Performance Optimization of Ultra-High Speed Permanent Magnet Electrodynamic Suspension System[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 773-782. doi: 10.3969/j.issn.0258-2724.20220856
    [6]CHEN Xiaobo, LIANG Shurong, KE Jia, CHEN Ling, HU Yu. Traffic Data Imputation Based on Graph Regularization and Schatten-p Norm Minimization[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1326-1333. doi: 10.3969/j.issn.0258-2724.20210295
    [7]SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
    [8]LUO Cheng, ZHANG Kunlun, WANG Ying. Stability Control of Electrodynamic Suspension with Permanent Magnet and Electromagnet Hybrid Halbach Array[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 574-581. doi: 10.3969/j.issn.0258-2724.20210868
    [9]ZHANG Wen, LUO Yanzhen, LIU Xin, LI Bin, WANG Longlin, YANG Xiaoxu. Gradation of Subgrade Soil and Its Salt-Resistance Effect in Salt Lake Area in Qinghai[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1264-1271, 1296. doi: 10.3969/j.issn.0258-2724.20190056
    [10]NONG Xingzhong, LI Xiang, LIU Tanghui, SHENG Xi, WANG Ping, ZHAO Caiyou. Band Gap Characteristics of Vibration Isolators of Phononic Crystals under Floating Slab[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1203-1209, 1276. doi: 10.3969/j.issn.0258-2724.20180849
    [11]ZHOU Dajin, CUI Chenyu, MA Jiaqing, ZHAO Lifeng, ZHANG Yong, ZHAO Yong. Starting Characteristics of Linear Motor in Evacuated Tube HTS Side-Suspended Maglev System[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 750-758. doi: 10.3969/j.issn.0258-2724.2016.04.021
    [12]SU Yugang, ZHANG Shuai, XU Yong, TANG Chunsen. Design and Switching Control of Power Supply Coils Applied to ICPT-Based Electric Vehicles[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 168-176. doi: 10.3969/j.issn.0258-2724.2016.01.024
    [13]HU Yingdi, GONG Shenguang, CHEN Cong. Layout Scheme of Measuring Array in Ships' Electric Field Measuring Station[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 135-140. doi: 10.3969/j.issn.0258-2724.2013.01.021
    [14]WANG Xin, LIU Qiang-Xiang. Optimization and Experimental Study of 18-Element Linearly-Polarized Radial Waveguide Array Antenna[J]. Journal of Southwest Jiaotong University, 2011, 24(5): 803-807. doi: 10.3969/j.issn.0258-2724.2011.05.015
    [15]LIU Zhi-Qiang, MA Hong-Guang. Effects of Array Errors on Fast Direction Finding Performance in Non-cooperative Passive Detection[J]. Journal of Southwest Jiaotong University, 2010, 23(4): 609-614. doi: 10. 3969/ j. issn. 0258-2724.
    [16]LI Xiangqiang, ZHAO Liu, CHEN Xiaobo, LIU Qingxiang. GW-Level High-Power Radial Line Helical Array Antenna[J]. Journal of Southwest Jiaotong University, 2009, 22(2): 215-220.
    [17]WANG Guangdi, ZHOU Xiaojun, GAO Bo. Flow Resistance Analysis of Submerged Floating Tunnel[J]. Journal of Southwest Jiaotong University, 2007, 20(6): 715-719.
    [18]FENG Zhen-yong. Search for 3 TeV Gamma-Ray Bursts Coincident with the BASTE Experiment by Using the Data of Tibet HD Air Shower Array[J]. Journal of Southwest Jiaotong University, 2002, 15(3): 347-351.
    [19]Liu Shangju. A Study on Static Stability of Permanent Maglev Mechanisms with Permanent Magnets[J]. Journal of Southwest Jiaotong University, 1999, 12(1): 82-86.
  • Cited by

    Periodical cited type(3)

    1. 石洪富,邓自刚,柯志昊,向雨晴,张卫华. 平板式永磁电动悬浮系统设计与实验研究. 电工技术学报. 2024(05): 1270-1283 .
    2. 曹婷,石洪富,刘峻志,吴学杰,邓自刚. 永磁电动悬浮多工况下的电磁力特性研究. 电工技术学报. 2024(17): 5262-5277 .
    3. 胡永攀,陈宝军,龙志强. 超高速永磁电动悬浮系统三维解析建模与电磁力特性分析. 机车电传动. 2023(06): 20-30 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 47.3 %FULLTEXT: 47.3 %META: 42.5 %META: 42.5 %PDF: 10.2 %PDF: 10.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.4 %其他: 18.4 %其他: 0.4 %其他: 0.4 %Seattle: 0.1 %Seattle: 0.1 %上海: 2.8 %上海: 2.8 %东莞: 0.3 %东莞: 0.3 %九江: 0.1 %九江: 0.1 %亚特兰大: 0.1 %亚特兰大: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %北京: 3.8 %北京: 3.8 %十堰: 0.5 %十堰: 0.5 %南京: 0.2 %南京: 0.2 %南充: 0.2 %南充: 0.2 %南昌: 1.0 %南昌: 1.0 %南通: 0.5 %南通: 0.5 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.5 %嘉兴: 0.5 %大庆: 0.5 %大庆: 0.5 %大连: 0.1 %大连: 0.1 %天津: 2.8 %天津: 2.8 %太原: 0.4 %太原: 0.4 %宁波: 0.2 %宁波: 0.2 %安曼: 0.1 %安曼: 0.1 %宣城: 0.4 %宣城: 0.4 %巴黎: 0.3 %巴黎: 0.3 %常州: 0.2 %常州: 0.2 %常德: 0.1 %常德: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.5 %广州: 0.5 %开罗: 0.1 %开罗: 0.1 %张家口: 3.3 %张家口: 3.3 %成都: 3.5 %成都: 3.5 %扬州: 1.1 %扬州: 1.1 %昆明: 0.8 %昆明: 0.8 %曼谷: 0.4 %曼谷: 0.4 %杭州: 2.1 %杭州: 2.1 %松原: 0.1 %松原: 0.1 %株洲: 0.2 %株洲: 0.2 %桂林: 0.1 %桂林: 0.1 %武汉: 0.6 %武汉: 0.6 %江门: 0.5 %江门: 0.5 %池州: 0.6 %池州: 0.6 %沈阳: 0.6 %沈阳: 0.6 %沧州: 0.2 %沧州: 0.2 %泉州: 0.4 %泉州: 0.4 %洛阳: 1.3 %洛阳: 1.3 %济南: 0.1 %济南: 0.1 %海口: 0.2 %海口: 0.2 %深圳: 0.3 %深圳: 0.3 %温州: 0.9 %温州: 0.9 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.2 %湛江: 0.2 %漯河: 6.1 %漯河: 6.1 %潍坊: 0.1 %潍坊: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %维也纳: 0.1 %维也纳: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 12.9 %芒廷维尤: 12.9 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.3 %苏州: 0.3 %衡水: 0.2 %衡水: 0.2 %西宁: 11.7 %西宁: 11.7 %西安: 0.4 %西安: 0.4 %诺沃克: 0.6 %诺沃克: 0.6 %贵阳: 0.4 %贵阳: 0.4 %赣州: 0.1 %赣州: 0.1 %辽阳: 0.1 %辽阳: 0.1 %运城: 0.8 %运城: 0.8 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.3 %郑州: 1.3 %重庆: 0.4 %重庆: 0.4 %长沙: 7.7 %长沙: 7.7 %阜新: 0.2 %阜新: 0.2 %青岛: 2.1 %青岛: 2.1 %鞍山: 0.1 %鞍山: 0.1 %其他其他Seattle上海东莞九江亚特兰大保定兰州北京十堰南京南充南昌南通合肥呼和浩特哥伦布嘉兴大庆大连天津太原宁波安曼宣城巴黎常州常德平顶山广州开罗张家口成都扬州昆明曼谷杭州松原株洲桂林武汉江门池州沈阳沧州泉州洛阳济南海口深圳温州湘潭湛江漯河潍坊盐城石家庄福州秦皇岛维也纳绵阳芒廷维尤芝加哥苏州衡水西宁西安诺沃克贵阳赣州辽阳运城邯郸郑州重庆长沙阜新青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(447) PDF downloads(107) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return