• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
WU Donghua, FENG Chengcheng, YU Jin. Contactless Power Supply Technology for Maglev Trains[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 522-530. doi: 10.3969/j.issn.0258-2724.20210893
Citation: WU Donghua, FENG Chengcheng, YU Jin. Contactless Power Supply Technology for Maglev Trains[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 522-530. doi: 10.3969/j.issn.0258-2724.20210893

Contactless Power Supply Technology for Maglev Trains

doi: 10.3969/j.issn.0258-2724.20210893
  • Received Date: 11 Nov 2021
  • Rev Recd Date: 21 Feb 2022
  • Publish Date: 11 Mar 2022
  • Aiming at the on-board power supply requirements of high-speed maglev trains in economy and reliability in narrow spaces, utilizing the coupling magnetic circuit, electrical performance simulation, and design optimization, a new type of transmitter, a non-contact power supply system (inductive power supply, IPS), is proposed, which features a multi-turn coil at the transmitting end, no magnetic core, and pickup ends similar to a double U-shaped coupled magnetic. First, according to the power supply requirements of high-speed maglev trains, the main parameters of each device are determined through theoretical calculations, and the IPS system design plan is completed. Then design and simulation analysis of the coupling magnetic circuit is conducted, including the use of Maxwell software to perform 3D simulation analysis on various coupling magnetic circuits, determining the optimal design scheme of the coupling magnetic circuit, and three-dimensional electromagnetic simulation to obtain the mutual inductance between the pickup device and the ground transmitting coil. Next, electrical performance simulation analysis is conducted with the use of Matlab software to establish an electrical simulation model of the IPS system, simulate the transmission power and efficiency of the IPS system, and determine the compensation device, ground inverter power supply and DC/DC parameters according to the power supply requirements. Finally, the 150 kW magnetic-field coupling contactless power supply system was developed and deployed on the maglev prototype test line. The on-site EMC (electromagnetic magnetic compatibility) performance and electrical performance test verification was completed. The transmission power exceeds 150 kW and the efficiency is 92%, achieving the expected objectives of the project

     

  • loading
  • [1]
    杨民生. 非接触感应耦合电能传输与控制技术及其应用研究[D]. 长沙: 湖南大学, 2012.
    [2]
    文艳晖,杨鑫,龙志强,等. 非接触供电技术及其在轨道交通上的应用[J]. 机车电传动,2016(6): 14-20.

    WEN Yanhui, YANG Xin, LONG Zhiqiang, et al. Contactless power supply technology and its application in rail transport[J]. Electric Drive for Locomotives, 2016(6): 14-20.
    [3]
    COVIC G A, BOYS J T. Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(1): 28-41. doi: 10.1109/JESTPE.2013.2264473
    [4]
    DICKINSON R M. Performance of a high-power, 2.388-GHz receiving array in wireless power transmission over 1.54 km[C]//1976 IEEE-MTT-S International Microwave Symposium. Cherry Hill: IEEE, 1976: 139-141.
    [5]
    CHOI S Y, GU B W, JEONG S Y, et al. Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 18-36. doi: 10.1109/JESTPE.2014.2343674
    [6]
    PRIMOVE Communication. Official website of PRIMOVE [EB/OL]. [2015-10-08]. http://primove.bombardier.com/application/light-rail.
    [7]
    KIM J H, LEE B S, LEE J H, et al. Development of 1 MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6242-6250. doi: 10.1109/TIE.2015.2417122
    [8]
    张颖. 高速磁浮列车无接触供电中的电能耦合优化技术研究[D]. 北京: 中国科学院电工研究所, 2012: 65-66.
    [9]
    孙跃,陈国东,戴欣,等. 非接触电能传输系统恒流控制策略[J]. 重庆大学学报,2008,31(7): 766-769. doi: 10.11835/j.issn.1000-582X.2008.07.012

    SUN Yue, CHEN Guodong, DAI Xin, et al. A constant current control method for contactless power transmission systems[J]. Journal of Chongqing University, 2008, 31(7): 766-769. doi: 10.11835/j.issn.1000-582X.2008.07.012
    [10]
    LI Y, MAI R K, YANG M K, et al. Cascaded multi-level inverter based IPT systems for high power applications[J]. Journal of Power Electronics, 2015, 15(6): 1508-1516. doi: 10.6113/JPE.2015.15.6.1508
    [11]
    麦瑞坤,陆立文,李勇,等. 一种采用最小电压与最大电流跟踪的IPT系统动态调谐方法[J]. 电工技术学报,2015,30(19): 32-38. doi: 10.3969/j.issn.1000-6753.2015.19.006

    MAI Ruikun, LU Liwen, LI Yong, et al. Dynamic resonant compensation approach based on minimum voltage and maximum current tracking for IPT system[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 32-38. doi: 10.3969/j.issn.1000-6753.2015.19.006
    [12]
    黄立敏,李砚玲,麦瑞坤,等. 感应电能传输系统电磁机构带通滤波特性建模分析[J]. 电工技术学报,2015,30(增刊1): 138-142.

    HUANG Limin, LI Yanling, MAI Ruikun, et al. Band-pass filter modeling and analysis for electromagnetic mechanism in inductive power transfer system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 138-142.
    [13]
    LIU C, HU A P, WANG B, et al. A capacitively coupled contactless matrix charging platform with soft switched transformer control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 249-260. doi: 10.1109/TIE.2011.2172174
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views(508) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return