• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 57 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
LI Miao, SHANG Xianhong, LI Tie, CHEN Xiaohao, LUO Shihui, MA Weihua, LEI Cheng. Influence of Bridge Flexibility on Horizontal Curve Passing of Medium-Low-Speed Maglev Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 490-497. doi: 10.3969/j.issn.0258-2724.20210872
Citation: LI Miao, SHANG Xianhong, LI Tie, CHEN Xiaohao, LUO Shihui, MA Weihua, LEI Cheng. Influence of Bridge Flexibility on Horizontal Curve Passing of Medium-Low-Speed Maglev Vehicles[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 490-497. doi: 10.3969/j.issn.0258-2724.20210872

Influence of Bridge Flexibility on Horizontal Curve Passing of Medium-Low-Speed Maglev Vehicles

doi: 10.3969/j.issn.0258-2724.20210872
  • Received Date: 08 Nov 2021
  • Rev Recd Date: 07 Feb 2022
  • Publish Date: 05 Mar 2022
  • In order to study the effect of bridge flexibility on the dynamic response of medium-low-speed maglev vehicles running on a horizontal curve with a curve radius of 70.0 m, a comparative analysis of the vehicle dynamic response through a flexible bridge and a rigid track is carried out. Firstly, a spatial dynamics vehicle model with 122 degrees of freedom is established, and the two-dimensional magnet/rail relationship with active levitation and passive guidance characteristics is considered in the model. Secondly, a horizontal curve finite element model consisting of flexible bridges is developed by using a parametric modeling method of three-dimensional Timosheko beam. Finally, the rigid-flexible coupled dynamic model of the vehicle-curve bridge system is constructed with the connection of levitation forces. The results show that, the self-oscillation characteristics and dynamic displacement response of the 17.0 m span circular-curve bridge meet the requirements of relevant standards. Compared with the case of a vehicle passing the rigid track, the dynamic response of the vehicle system under the influence of the flexible bridge is more drastic, and evident in the lateral dynamic response of the vehicle system, while the difference in the response of the levitation gap and the vertical acceleration of the car body is smaller, and the curve passing ability of the vehicle will be overestimated in the case of the rigid track. The maximum lateral displacement of the electromagnet calculated with the flexible bridge and rigid track models does not exceed 6.0 mm, and the levitation gap fluctuates within ±4.0 mm of the rated value, indicating that the vehicle has a good curve passing performance in the comparison analysis.

     

  • loading
  • [1]
    翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2]
    马卫华,罗世辉,张敏,等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报,2021,21(1): 199-216.

    MA Weihua, LUO Shihui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216.
    [3]
    翟婉明,赵春发. 磁浮车辆/轨道系统动力学(Ⅰ): 磁/轨相互作用及稳定性[J]. 机械工程学报,2005,41(7): 1-10. doi: 10.3321/j.issn:0577-6686.2005.07.001

    ZHAI Wanming, ZHAO Chunfa. Dynamics of maglev vehicle/guideway systems (Ⅰ): magnet/rail interaction and system stability[J]. Chinese Journal of Mechanical Engineering, 2005, 41(7): 1-10. doi: 10.3321/j.issn:0577-6686.2005.07.001
    [4]
    DING J F, YANG X, LONG Z Q. Structure and control design of levitation electromagnet for electromagnetic suspension medium-speed maglev train[J]. Journal of Vibration and Control, 2019, 25(6): 1179-1193. doi: 10.1177/1077546318813405
    [5]
    龙志强,洪华杰,周晓兵. 磁浮列车的非线性控制问题研究[J]. 控制理论与应用,2003,20(3): 399-402. doi: 10.3969/j.issn.1000-8152.2003.03.016

    LONG Zhiqiang, HONG Huajie, ZHOU Xiaobing. Research of nonlinear control for maglev train[J]. Control Theory & Applications, 2003, 20(3): 399-402. doi: 10.3969/j.issn.1000-8152.2003.03.016
    [6]
    周丹峰,李杰,余佩倡,等. 磁浮交通轨排耦合自激振动分析及自适应控制方法[J]. 自动化学报,2019,45(12): 2328-2343.

    ZHOU Danfeng, LI Jie, YU Peichang, et al. Analysis and adaptive control of the track induced self-excited vibration for the maglev transport[J]. Acta Automatica Sinica, 2019, 45(12): 2328-2343.
    [7]
    KONG E, SONG J S, KANG B B, et al. Dynamic response and robust control of coupled maglev vehicle and guideway system[J]. Journal of Sound and Vibration, 2011, 330(25): 6237-6253. doi: 10.1016/j.jsv.2011.05.031
    [8]
    SUN Y G, XU J Q, CHEN C, et al. Fuzzy H robust control for magnetic levitation system of maglev vehicles based on T-S fuzzy model: design and experiments[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(2): 911-922.
    [9]
    WANG H, ZHONG X B, SHEN G. Analysis and experimental study on the MAGLEV vehicle-guideway interaction based on the full-state feedback theory[J]. Journal of Vibration and Control, 2015, 21(2): 408-416. doi: 10.1177/1077546313488431
    [10]
    CHEN X H, MA W H, LUO S H. Study on stability and bifurcation of electromagnet-track beam coupling system for EMS maglev vehicle[J]. Nonlinear Dynamics, 2020, 101(4): 2181-2193. doi: 10.1007/s11071-020-05917-8
    [11]
    ZHAI W M, HAN Z L, CHEN Z W, et al. Train-track-bridge dynamic interaction: a state-of-the-art review[J]. Vehicle System Dynamics, 2019, 57(7): 984-1027. doi: 10.1080/00423114.2019.1605085
    [12]
    KIM K J, HAN J B, HAN H S, et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601. doi: 10.1080/00423114.2015.1013039
    [13]
    HAN J B, HAN H S, KIM S S, et al. Design and validation of a slender guideway for maglev vehicle by simulation and experiment[J]. Vehicle System Dynamics, 2016, 54(3): 370-385. doi: 10.1080/00423114.2015.1137957
    [14]
    LEE J S, KWON S D, KIM M Y, et al. A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges[J]. Journal of Sound and Vibration, 2009, 328(3): 301-317. doi: 10.1016/j.jsv.2009.08.010
    [15]
    WANG D X, LI X Z, LIANG L, et al. Influence of the track structure on the vertical dynamic interaction analysis of the low-to-medium-speed maglev train-bridge system[J]. Advances in Structural Engineering, 2019, 22(14): 2937-2950. doi: 10.1177/1369433219854550
    [16]
    王党雄,李小珍,梁林. 中低速磁浮列车-桥梁系统竖向耦合振动理论分析与试验验证[J]. 土木工程学报,2019,52(8): 81-90.

    WANG Dangxiong, LI Xiaozhen, LIANG Lin. Theoretical analysis and experimental verification of the vertical coupling vibration of low-to-medium speed maglev train-bridge system[J]. China Civil Engineering Journal, 2019, 52(8): 81-90.
    [17]
    WANG D X, LI X Z, WANG Y W, et al. Dynamic interaction of the low-to-medium speed maglev train and bridges with different deflection ratios: experimental and numerical analyses[J]. Advances in Structural Engineering, 2020, 23(11): 2399-2413. doi: 10.1177/1369433220913367
    [18]
    YIM B H, HAN H S, LEE J K, et al. Curving performance simulation of an EMS-type maglev vehicle[J]. Vehicle System Dynamics, 2009, 47(10): 1287-1304. doi: 10.1080/00423110802632071
    [19]
    赵春发,翟婉明,王其昌. 低速磁浮车辆曲线通过动态响应仿真分析[J]. 中国铁道科学,2005,26(3): 94-98. doi: 10.3321/j.issn:1001-4632.2005.03.020

    ZHAO Chunfa, ZHAI Wanming, WANG Qichang. Simulation analysis of the dynamic response of low-speed maglev vehicle curve negotiation[J]. China Railway Science, 2005, 26(3): 94-98. doi: 10.3321/j.issn:1001-4632.2005.03.020
    [20]
    赵春发,翟婉明. 低速磁浮车辆导向方式及其横向动态特性[J]. 中国铁道科学,2005,26(6): 28-32. doi: 10.3321/j.issn:1001-4632.2005.06.006

    ZHAO Chunfa, ZHAI Wanming. Guidance mode and dynamic lateral characteristics of low-speed maglev vehicle[J]. China Railway Science, 2005, 26(6): 28-32. doi: 10.3321/j.issn:1001-4632.2005.06.006
    [21]
    CUI P, LI J, LIU D S. Carrying capacity for the electromagnetic suspension low-speed maglev train on the horizontal curve[J]. Science China Technological Sciences, 2010, 53(4): 1082-1087. doi: 10.1007/s11431-009-0394-8
    [22]
    曾佑文,王少华. 三转向架磁悬浮车几何曲线通过分析[J]. 西南交通大学学报,2003,38(3): 282-285. doi: 10.3969/j.issn.0258-2724.2003.03.009

    ZENG Youwen, WANG Shaohua. Research on geometrical curve negotiating of three-truck maglev vehicle[J]. Journal of Southwest Jiaotong University, 2003, 38(3): 282-285. doi: 10.3969/j.issn.0258-2724.2003.03.009
    [23]
    POGORELO D. Differential-algebraic equations in multibody system modeling[J]. Numerical Algorithms, 1998, 19(1): 183-194.
    [24]
    CHEN X H, MA W H, LUO S H, et al. A vehicle–track beam matching index in EMS maglev transportation system[J]. Archive of Applied Mechanics, 2020, 90(4): 773-787. doi: 10.1007/s00419-019-01638-6
    [25]
    BRZEZINA W, LANGERHOLC J. Lift and side forces on rectangular pole pieces in two dimensions[J]. Journal of Applied Physics, 1974, 45(4): 1869-1872. doi: 10.1063/1.1663505
    [26]
    德米特里 · 波戈列洛夫,雷强,根纳季 · 米克希夫,等. 基于UM的磁浮列车-轨道梁耦合振动仿真程序开发[J]. 计算机辅助工程,2019,28(1): 28-35.

    POGORELOV Dmitry, LEI Qiang, MIKHEEV Gennady, et al. Development of dynamics simulation program for coupling vibration of maglev train-track beam based on UM[J]. Computer Aided Engineering, 2019, 28(1): 28-35.
    [27]
    中国铁路设计集团有限公司, 中铁第四勘察设计院集团有限公司, 中车同月研究院有限公司. 磁浮铁路技术标准(试行): TB 10630—2019[S]. 北京: 中国铁道出版社有限公司, 2019.
    [28]
    PARK K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations[J]. Journal of Applied Mechanics, 1975, 42(2): 464-470. doi: 10.1115/1.3423600
    [29]
    中华人民共和国住房和城乡建设部. 中低速磁浮交通设计规范: CJJ/T 262—2017[S]. 北京: 中国建筑工业出版社, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(283) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return