• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
CHEN Feiyu, LU Bingju, CAO Xuwei, ZENG Liang. Corrosion Detection Based on Frequency Spectrum Difference Coefficient of Higher-Order Lamb Modes[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1162-1170. doi: 10.3969/j.issn.0258-2724.20210864
Citation: CHEN Feiyu, LU Bingju, CAO Xuwei, ZENG Liang. Corrosion Detection Based on Frequency Spectrum Difference Coefficient of Higher-Order Lamb Modes[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1162-1170. doi: 10.3969/j.issn.0258-2724.20210864

Corrosion Detection Based on Frequency Spectrum Difference Coefficient of Higher-Order Lamb Modes

doi: 10.3969/j.issn.0258-2724.20210864
  • Received Date: 09 Nov 2021
  • Rev Recd Date: 17 Feb 2022
  • Available Online: 13 Sep 2023
  • Publish Date: 05 Mar 2022
  • In view of the corrosion detection of large thin-walled structural parts in industrial equipment, a corrosion detection method based on spectral coherence analysis using high-order Lamb waves was proposed. Firstly, the A1 mode Lamb wave with a frequency slightly higher than the cutoff frequency was adopted and transmitted at different positions on the corroded thin-walled structure, and the response signal of each propagation path was collected; then, the dispersion compensation technique was used to eliminate the dispersion effect in the signal, so the direct wave packet of A1 mode could be separated and extracted from the signal using a suitable window function. On this basis, the frequency spectrum difference coefficient (FSDC) of the extracted wave packet and the excitation signal was established as an index, which was subsequently discussed in terms of its sensitivity to corrosion defects of different widths and depths with the help of finite element simulation; finally, an experimental validation was conducted on a corroded aluminum plate, where the FSDC index of each path was combined with the probability imaging algorithm to locate and visualize the corrosion defect in the detection area. Results show that the FSDC value keeps zero for an intact path and stays between 0 and 1 for corrosions of different widths and depths. Compared with the traditional tomography method, the proposed method has better detection sensitivity and anti-interference ability.

     

  • [1]
    NAGATA Y, HUANG J, ACHENBACH J D, et al. Lamb wave tomography using laser-based ultrasonics[M]. Review of Progress in Quantitative Nondestructive Evaluation. Boston: Springer, 1995: 561-568.
    [2]
    PEI J, YOUSUF M I, DEGERTEKIN F L, et al. Lamb wave tomography and its application in pipe erosion/corrosion monitoring[J]. Research in Nondestructive Evaluation, 1996, 8(4): 189-197. doi: 10.1080/09349849609409599
    [3]
    MALYARENKO E V, HINDERS M K. Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures[J]. The Journal of the Acoustical Society of America, 2000, 108(4): 1631-1639. doi: 10.1121/1.1289663
    [4]
    MALYARENKO E V, HINDERS M K. Ultrasonic Lamb wave diffraction tomography[J]. Ultrasonics, 2001, 39(4): 269-281. doi: 10.1016/S0041-624X(01)00055-5
    [5]
    BELANGER P, CAWLEY P. Feasibility of low frequency straight-ray guided wave tomography[J]. NDT & E International, 2009, 42(2): 113-119.
    [6]
    BELANGER P, CAWLEY P. Lamb wave tomography to evaluate the maximum depth of corrosion patches[C]//34th Annual Review of Progress in Quantitative Nondestructive Evaluation. Colorado: American Institute of Physics, 2008, 975(1): 1290-1297.
    [7]
    HUTHWAITE P. Improving accuracy through density correction in guided wave tomography[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2186): 20150832.1-20150832.25.
    [8]
    RAO J, RATASSEPP M, FAN Z. Guided wave tomography based on full waveform inversion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(5): 737-745. doi: 10.1109/TUFFC.2016.2536144
    [9]
    RAO J, RATASSEPP M, FAN Z. Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion[J]. Journal of Sound and Vibration, 2017, 400: 317-328. doi: 10.1016/j.jsv.2017.04.017
    [10]
    ROSE J L, BARSHINGER J N. Using ultrasonic guided wave mode cutoff for corrosion detection and classification[C]//1998 IEEE Ultrasonics Symposium. Sendai: IEEE, 1998(1): 851-854.
    [11]
    LUO Z, ZENG L, LIN J. A hidden corrosion detection method based on robust multimodal Lamb waves[J]. Measurement Science and Technology, 2020, 31(4): 044002.1-044002.12.
    [12]
    CAO X, ZENG L, LIN J, et al. A correlation-based approach to corrosion detection with Lamb wave mode cutoff[J]. Journal of Nondestructive Evaluation, 2019, 38(87): 1-16.
    [13]
    ROSE J L. Ultrasonic guided waves in solid media[M]. New York: Cambridge University Press, 2014: 104-106
    [14]
    ZENG L, LIN J, BAO J, et al. Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation[J]. Journal of Sound and Vibration, 2017, 394: 130-145.
    [15]
    AULD B A. Acoustic fields and waves in solids: volume 2[M]. Florida: [s.n.], 1973: 75-94.
    [16]
    PAVLAKOVIC B N. Leaky guided ultrasonic waves in NDT[D]. London, UK: Imperial College London, 1998.
    [17]
    MICHAELS J E, LEE S J, CROXFORD A J, et al. Chirp excitation of ultrasonic guided waves[J]. Ultrasonics, 2013, 53(1): 265-270. doi: 10.1016/j.ultras.2012.06.010
    [18]
    ZHOU C, SU Z, CHENG L. Probability-based diagnostic imaging using hybrid features extracted from ultrasonic Lamb wave signals[J]. Smart Materials and Structures, 2011, 20(12): 125005.1-125005.14.
    [19]
    SUBBARAO P M V, MUNSHI P, MURALIDHAR K. Performance of iterative tomographic algorithms applied to non-destructive evaluation with limited data[J]. NDT & E International, 1997, 30(6): 359-370.
    [20]
    HANSEN P C, JØRGENSEN J S. AIR tools II: algebraic iterative reconstruction methods, improved implementation[J]. Numerical Algorithms, 2018, 79(1): 107-137. doi: 10.1007/s11075-017-0430-x
  • Relative Articles

    [1]YANG Fei, SUN Xianfu, TAN Shehui, ZHAO Wenbo, WEI Zilong. Evaluation Difference of Dynamic and Static Track Irregularity and Characteristics of Dynamic Chord Measurement Method[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1239-1249. doi: 10.3969/j.issn.0258-2724.20210732
    [2]HAN Linfeng, WANG Pingyi, MU Ping, WANG Meili, WU Guomao. Experimental Study on Near-Field Characteristics of Impulse Waves Generated by Three-Dimensional Rock Slide[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 346-352. doi: 10.3969/j.issn.0258-2724.20200078
    [3]CHEN Xiaoyu, TANG Maolin. Corrosion Rate of Non-Galvanized High-Strength Steel Wires under Different Temperature and Humidity Conditions[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 253-259. doi: 10.3969/j.issn.0258-2724.2018.02.005
    [4]LUO Jia, LIU Dagang. Tunnel Crack Extraction Based on Adaptive Threshold and Connected Domain[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1137-1141, 1149. doi: 10.3969/j.issn.0258-2724.2018.06.007
    [5]QIAO Hongxia, GONG Wei, WANG Penghui, CHEN Guangfeng, CHENG Qianyuan. Experimental Study on Steel Reinforcement Protection in Magnesium Oxychloride Cement Concrete under Sulfate Environment[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 247-253. doi: 10.3969/j.issn.0258-2724.2017.02.006
    [6]ZHOU Xiuyun, XUE Yun, ZHOU Jinlong. Defect Detection of Solder Balls Based on Multi-Physical Field[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 363-368. doi: 10.3969/j.issn.0258-2724.2017.02.021
    [7]YE Huawen, HUANG Yun, WANG Yiqiang, QIANG Shizhong. Fatigue Life Estimation of Corroded Bridge Wires Based on Theory of Critical Distances[J]. Journal of Southwest Jiaotong University, 2015, 28(2): 294-299. doi: 10.3969/j.issn.0258-2724.2015.02.013
    [8]MIAO Changqing, WEI Tinghua, WANG Yichun, WANG Man. Corrosion Rate Test of Cable Wires of Large Span Bridge[J]. Journal of Southwest Jiaotong University, 2014, 27(3): 513-518. doi: 10.3969/j.issn.0258-2724.2014.03.022
    [9]JIANG Chao, CHEN Hui, WANG Xiaoming, MA Jijun, LI Hengkui. Stress Corrosion Behavior of Car-Body Aluminum Alloy for High Speed Train[J]. Journal of Southwest Jiaotong University, 2013, 26(3): 500-506. doi: 10.3969/j.issn.0258-2724.2013.03.017
    [10]JIANG Honghai, LI Xueqin, LIU Peiyong, YIN Goufu. Detection Method of Typical Defects in Arc Ferrite Magnet Surface[J]. Journal of Southwest Jiaotong University, 2013, 26(1): 129-134,140. doi: 10.3969/j.issn.0258-2724.2013.01.020
    [11]YU Xinian, WANG Baoyan, LIU Jun. Experimental Study on Electrochemical Corrosion Mechanism of Welded Bogies[J]. Journal of Southwest Jiaotong University, 2012, 25(1): 133-138. doi: 10.3969/j.issn.0258-2724.2012.021.01.022
    [12]LIN Xiu-Zhou, CAI Zhen-Bing, HE Li-Ping, YI Jing-Hua, XIE Xin-Yuan, SHU Min-Hao. Simulation and Experimental Investigation of Tortional Wear Corrosion at Constant Temperature[J]. Journal of Southwest Jiaotong University, 2011, 24(1): 132-137. doi: 10.3969/j.issn.0258-2724.2011.01.021
    [13]ZHENG Jia-shu, YUZhi-xiang. Analysis of Modal Properties of Cable-Net Structures[J]. Journal of Southwest Jiaotong University, 2005, 18(1): 58-63.
    [14]SUNJi-ping, ZHANG Chang-sen. Effect of Crowd on Propagation Characteristic of Electromagnetic Waves in Limited Underground Space[J]. Journal of Southwest Jiaotong University, 2003, 16(4): 403-407.
    [15]WANG Ping, LIUXue-yi, LI Cheng-hui. Dynamic Analysis ofTrack Wave Propagation Supported on Continuous Elastic Foundations[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 17-22.
    [16]OUYang-feng. The Corrosion and Protection of USAB Reactors[J]. Journal of Southwest Jiaotong University, 2001, 14(1): 5-7.
    [17]ZHANG  Gong, Ma- Lei, Li- Chi. Discrimination Character of the Half-Wave Differential Spectrum to the Mandarin Initials and Finals[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 466-470.
    [18]ZhangHong, Ma Lei, Li Zhi. Discrimination Character of the Half-Wave Differential Spectrum to the Mandarin Initials and Finals[J]. Journal of Southwest Jiaotong University, 1999, 12(5): 466-470.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.7 %FULLTEXT: 31.7 %META: 63.6 %META: 63.6 %PDF: 4.7 %PDF: 4.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.7 %其他: 11.7 %上海: 1.0 %上海: 1.0 %东莞: 0.3 %东莞: 0.3 %临汾: 0.2 %临汾: 0.2 %北京: 13.7 %北京: 13.7 %十堰: 1.0 %十堰: 1.0 %南京: 0.3 %南京: 0.3 %南通: 0.2 %南通: 0.2 %合肥: 0.2 %合肥: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.7 %嘉兴: 0.7 %天津: 1.5 %天津: 1.5 %奥斯陆: 0.2 %奥斯陆: 0.2 %宁波: 0.3 %宁波: 0.3 %安康: 0.8 %安康: 0.8 %宣城: 0.2 %宣城: 0.2 %张家口: 2.2 %张家口: 2.2 %成都: 0.7 %成都: 0.7 %扬州: 1.7 %扬州: 1.7 %日喀则: 0.2 %日喀则: 0.2 %昆明: 0.3 %昆明: 0.3 %晋中: 0.2 %晋中: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.2 %杭州: 1.2 %武汉: 0.3 %武汉: 0.3 %池州: 0.3 %池州: 0.3 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.3 %深圳: 0.3 %温州: 0.5 %温州: 0.5 %漯河: 3.8 %漯河: 3.8 %烟台: 0.2 %烟台: 0.2 %石家庄: 2.7 %石家庄: 2.7 %芒廷维尤: 25.4 %芒廷维尤: 25.4 %芝加哥: 0.3 %芝加哥: 0.3 %衢州: 0.2 %衢州: 0.2 %西宁: 19.2 %西宁: 19.2 %西安: 0.5 %西安: 0.5 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 0.8 %运城: 0.8 %郑州: 2.0 %郑州: 2.0 %重庆: 0.5 %重庆: 0.5 %长沙: 2.0 %长沙: 2.0 %雅加达: 0.3 %雅加达: 0.3 %其他上海东莞临汾北京十堰南京南通合肥哥伦布嘉兴天津奥斯陆宁波安康宣城张家口成都扬州日喀则昆明晋中朝阳杭州武汉池州沈阳洛阳淄博深圳温州漯河烟台石家庄芒廷维尤芝加哥衢州西宁西安诺沃克贵阳运城郑州重庆长沙雅加达

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(380) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return