• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 59 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
BAI Bing. Spherical Layer Sampling Method for Probability Evaluation on Structural Failure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 691-699. doi: 10.3969/j.issn.0258-2724.20210848
Citation: BAI Bing. Spherical Layer Sampling Method for Probability Evaluation on Structural Failure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 691-699. doi: 10.3969/j.issn.0258-2724.20210848

Spherical Layer Sampling Method for Probability Evaluation on Structural Failure

doi: 10.3969/j.issn.0258-2724.20210848
  • Received Date: 01 Nov 2021
  • Rev Recd Date: 05 May 2022
  • Available Online: 08 May 2024
  • Publish Date: 14 Oct 2022
  • When the traditional Monte Carlo sampling method is applied to complex reliability problems such as small failure probability, there are some shortcomings such as low efficiency and limited accuracy. To solve this problem, a spherical layer sampling analysis method is developed. Firstly, by dividing the distance and direction parameters, the standard normal random vector is reconstructed, and its standard normality and mutual independence are verified. Thereafter, based on a layered sampling strategy, the standard normal space with the radius beyond first order reliability index is divided into multiple spherical layers, which are then sampled by the reconstructed vector layer by layer. Combined with the full probability formula, a spherical layer sampling algorithm is developed to estimate the structural failure probability. Finally, three typical examples are taken as objects of interest, and the performance of the algorithm is verified through comparative analysis. The results show that, the proposed algorithm has high sampling efficiency and convergence performance, and the error of calculation results is within 3%. Compared with other algorithms, its estimation variance is smaller, and it can effectively solve complex reliability problems such as multiple design check points. The algorithm has advantages in sampling efficiency, scope of application, and stability, and is more suitable for solving and analyzing the reliability of actual complex structures.

     

  • loading
  • [1]
    吕震宙,宋述芳,李洪双,等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社,2009: 13-85,194-242.
    [2]
    MELCHERS R E. Importance sampling in structural systems[J]. Structural Safety, 1989, 6(1): 3-10. doi: 10.1016/0167-4730(89)90003-9
    [3]
    GEYER S, PAPAIOANNOU I, STRAUB D. Cross entropy-based importance sampling using Gaussian densities revisited[J]. Structural Safety, 2019, 76: 15-27. doi: 10.1016/j.strusafe.2018.07.001
    [4]
    KOUTSOURELAKIS P S, PRADLWARTER H J, SCHUËLLER G I. Reliability of structures in high dimensions, part Ⅰ: algorithms and applications[J]. Probabilistic Engineering Mechanics, 2004, 19(4): 409-417. doi: 10.1016/j.probengmech.2004.05.001
    [5]
    SCHUËLLER G I, PRADLWARTER H J, KOUTSOURELAKIS P S. A critical appraisal of reliability estimation procedures for high dimensions[J]. Probabilistic Engineering Mechanics, 2004, 19(4): 463-474. doi: 10.1016/j.probengmech.2004.05.004
    [6]
    吕召燕,吕震宙,张磊刚,等. 基于条件期望的改进线抽样方法及其应用[J]. 工程力学,2014,31(4): 34-39.

    LÜ Zhaoyan, LÜ Zhenzhou, ZHANG Leigang, et al. An improved line sampling method and its application based on conditional expectation[J]. Engineering Mechanics, 2014, 31(4): 34-39.
    [7]
    AU S K, BECK J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
    [8]
    AU S K, WANG Y. Engineering risk assessment with subset simulation[M]. Singapore: Wiley, 2014: 157-204.
    [9]
    KATAFYGIOTIS L S, CHEUNG S H. Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study[J]. Structural Safety, 2007, 29(3): 194-207. doi: 10.1016/j.strusafe.2006.07.003
    [10]
    KATAFYGIOTIS L, CHEUNG S H, YUEN K V. Spherical subset simulation (S³) for solving non-linear dynamical reliability problems[J]. International Journal of Reliability and Safety, 2010, 4(2/3): 122-138. doi: 10.1504/IJRS.2010.032442
    [11]
    NOWAK A S, COLLINS K R. Reliability of structures [M]. 2nd edition. New York: CRC Press, 2013: 97-100,126-161.
    [12]
    何平. 数理统计与多元统计[M]. 成都: 西南交通大学出版社,2004: 18-27.
    [13]
    盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 4版. 北京: 高等教育出版社,2008: 106-110,135-208.
    [14]
    巩祥瑞,吕震宙,孙天宇,等. 一种新的矩独立重要性测度分析方法及高效算法[J]. 北京航空航天大学学报,2019,45(2): 283-290.

    GONG Xiangrui, LÜ Zhenzhou, SUN Tianyu, et al. A new moment-independent importance measure analysis method and its efficient algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 283-290.
    [15]
    GONG W P, JUANG C H, MARTIN J R II, et al. New sampling method and procedures for estimating failure probability[J]. Journal of Engineering Mechanics, 2016, 142(4): 04015107.1-04015107.10.
    [16]
    DER KIUREGHIAN A, DAKESSIAN T. Multiple design points in first and second-order reliability[J]. Structural Safety, 1998, 20(1): 37-49. doi: 10.1016/S0167-4730(97)00026-X
    [17]
    白冰. 大跨度钢斜拉桥施工及运营过程系统可靠度研究[D]. 成都: 西南交通大学,2015.
    [18]
    CREMONA C. Structural performance: probability-based assessement[M]. London: ISTE,2011.
    [19]
    薛国峰. 结构可靠性和概率失效分析数值模拟方法[D]. 哈尔滨: 哈尔滨工业大学,2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views(145) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return