• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
Volume 58 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
WANG Wei, YAO Xuedan, GAO Guiqiang. Laboratory Thermo-Mechanical Coupling Test of Tunnel Lining Concrete[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 993-1000. doi: 10.3969/j.issn.0258-2724.20210813
Citation: WANG Wei, YAO Xuedan, GAO Guiqiang. Laboratory Thermo-Mechanical Coupling Test of Tunnel Lining Concrete[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 993-1000. doi: 10.3969/j.issn.0258-2724.20210813

Laboratory Thermo-Mechanical Coupling Test of Tunnel Lining Concrete

doi: 10.3969/j.issn.0258-2724.20210813
  • Received Date: 18 Oct 2021
  • Rev Recd Date: 24 Dec 2021
  • Available Online: 14 Apr 2023
  • Publish Date: 30 Dec 2021
  • In order to study the relationship among the fire exposure time, the content of coarse aggregate, and the macroscopic damage of tunnel lining concrete, a thermo-mechanical coupling test device of lining concrete was independently improved according to the actual fire exposure characteristics of tunnel lining, and the damage law of concrete test blocks with 20%, 30%, and 40% coarse aggregate was studied under the load ratio constant of 28% and different fire exposure time. The results show that when there is no fire accident, no deterioration appears on the surface of the lining concrete under a small load, and the quality does not change greatly. The residual compressive strength increases. Under the action of thermo-mechanical coupling, as the fire continues, a few micro-cracks form on the surface of the test block after 0.5 h of fire exposure, and wide cracks appear on the surface after 1.0 h of fire exposure, with many small cracks distributed and some cracks crossing each other. After 2.0 h of fire exposure, the bottom surface of the test block is seriously damaged. The time and degree of fire development are crucial to the damage to the lining structure. As the content of coarse aggregate of concrete decreases, the internal temperature conduction velocity of concrete slows down; the temperature value at the same position becomes smaller, and the apparent damage increases significantly. The mass loss rate of concrete with 20% coarse aggregate can reach 8.14%, while that of concrete with 40% coarse aggregate is only 4.10%, which indicates that when the strength is the same, concrete with high-content coarse aggregate has better fire resistance.

     

  • loading
  • [1]
    PICHLER C, LACKNER R, MANG H A. Safety assessment of concrete tunnel linings under fire load[J]. Journal of Structural Engineering, 2006, 132(6): 961-969. doi: 10.1061/(ASCE)0733-9445(2006)132:6(961)
    [2]
    闫治国,朱合华,梁利. 火灾高温下隧道衬砌管片力学性能试验[J]. 同济大学学报(自然科学版),2012,40(6): 823-828.

    YAN Zhiguo, ZHU Hehua, LIANG Li. Experimental study on mechanical performance of lining segments in fire accidents[J]. Journal of Tongji University (Natural Science), 2012, 40(6): 823-828.
    [3]
    李忠友,刘元雪,刘树林,等. 火灾作用下隧道衬砌结构变形理论分析模型[J]. 岩土力学,2012,33(增2): 307-310.

    LI Zhongyou, LIU Yuanxue, LIU Shulin, et al. Theoretical analysis model of deformation behavior of tunnel linings subjected to fire load[J]. Rock and Soil Mechanics, 2012, 33(S2): 307-310.
    [4]
    YAN Z G, ZHU H H, WOODY J, et al. Full-scale fire tests of RC metro shield TBM tunnel linings[J]. Construction and Building Materials, 2012, 36: 484-494. doi: 10.1016/j.conbuildmat.2012.06.006
    [5]
    郭军,刘帅,蒋树屏. 海底隧道管节结构防火试验与数值模拟[J]. 中国公路学报,2016,29(1): 96-104,114.

    GUO Jun, LIU Shuai, JIANG Shuping. Fire-proof test and numerical simulation on tube structure of subsea tunnel[J]. China Journal of Highway and Transport, 2016, 29(1): 96-104,114.
    [6]
    QIAO R J, SHAO Z S, WEI W, et al. Theoretical investigation into the thermo-mechanical behaviours of tunnel lining during RABT fire development[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 4807-4818. doi: 10.1007/s13369-018-3555-x
    [7]
    ZHANG Q, WANG W Y, BAI S S, et al. Response analysis of tunnel lining structure under impact and fire loading[J]. Advances in Mechanical Engineering, 2019, 11(3): 168781401983447.1-168781401983447.6.
    [8]
    王明年,田源,于丽,等. 基于混凝土循环剥落的隧道火灾损伤数值模型研究[J]. 中国安全生产科学技术,2020,16(3): 105-110.

    WANG Mingnian, TIAN Yuan, YU Li, et al. Study on numerical model of tunnel fire damage based on concrete cyclic spalling[J]. Journal of Safety Science and Technology, 2020, 16(3): 105-110.
    [9]
    CHAN Y N, PENG G F, ANSON M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures[J]. Cement and Concrete Composites, 1999, 21(1): 23-27. doi: 10.1016/S0958-9465(98)00034-1
    [10]
    黄涛,王珍,张泽江. 公路隧道衬砌高性能混凝土的高温烧损试验研究[J]. 中国矿业大学学报,2012,41(1): 139-144.

    HUANG Tao, WANG Zhen, ZHANG Zejiang. Experimental research on the high-temperature burning of a highway tunnel lining made from high performance concrete[J]. Journal of China University of Mining & Technology, 2012, 41(1): 139-144.
    [11]
    MA Q M, GUO R X, ZHAO Z M, et al. Mechanical properties of concrete at high temperature-A review[J]. Construction and Building Materials, 2015, 93: 371-383. doi: 10.1016/j.conbuildmat.2015.05.131
    [12]
    DU S, ZHANG Y C, SUN Q, et al. Experimental study on color change and compression strength of concrete tunnel lining in a fire[J]. Tunnelling and Underground Space Technology, 2018, 71: 106-114. doi: 10.1016/j.tust.2017.08.025
    [13]
    张秋实,周川胜,孙春平,等. 高温环境下钢筋混凝土结构温度传播规律研究[J]. 现代隧道技术,2021,58(4): 185-193.

    ZHANG Qiushi, ZHOU Chuansheng, SUN Chunping, et al. Study on the pattern of temperature propagation of reinforced concrete structure under high-temperature environment[J]. Modern Tunnelling Technology, 2021, 58(4): 185-193.
    [14]
    中国建筑科学研究院, 中华人民共和国建设部, 国家质量监督检验检疫总局. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.
    [15]
    巴光忠,苗吉军,张伟平,等. 高温下混凝土裂缝对温度场的影响[J]. 建筑材料学报,2016,19(4): 730-736. doi: 10.3969/j.issn.1007-9629.2016.04.021

    BA Guangzhong, MIAO Jijun, ZHANG Weiping, et al. Influence of crack on temperature field of concrete at elevated temperature[J]. Journal of Building Materials, 2016, 19(4): 730-736. doi: 10.3969/j.issn.1007-9629.2016.04.021
    [16]
    中华人民共和国公安部. 建筑设计防火规范: GB 50016—2014[S]. 北京: 中国计划出版社, 2014.
    [17]
    韩宇栋,张君,高原. 粗骨料体积含量对混凝土断裂参数的影响[J]. 工程力学,2013,30(3): 191-197,205.

    HAN Yudong, ZHANG Jun, GAO Yuan. Effect of coarse aggregate content on fracture parameters of concrete[J]. Engineering Mechanics, 2013, 30(3): 191-197,205.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article views(302) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return