• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus
  • Indexed by Core Journals of China, Chinese S&T Journal Citation Reports
  • Chinese S&T Journal Citation Reports
  • Chinese Science Citation Database
NONG Xingzhong, LI Xiang, LIU Tanghui, SHENG Xi, WANG Ping, ZHAO Caiyou. Band Gap Characteristics of Vibration Isolators of Phononic Crystals under Floating Slab[J]. Journal of Southwest Jiaotong University, 2019, 54(6): 1203-1209, 1276. doi: 10.3969/j.issn.0258-2724.20180849
Citation: ZHANG Jie, XU Houdong, WANG Hai, HE Hongxing, LI li, FU Ning, TU Bin. Highly Robust Adaptive Beamforming Algorithm in Satellite Communications[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 556-563. doi: 10.3969/j.issn.0258-2724.20210744

Highly Robust Adaptive Beamforming Algorithm in Satellite Communications

doi: 10.3969/j.issn.0258-2724.20210744
  • Received Date: 16 Sep 2021
  • Rev Recd Date: 04 Jan 2022
  • Available Online: 17 Apr 2024
  • Publish Date: 01 Apr 2022
  • In satellite communications, leveraging adaptive beamforming technology can significantly improve the anti-jamming ability of navigation receivers. However, conventional adaptive beamforming algorithms are sensitive to model mismatch. In order to overcome the performance degradation of conventional adaptive beamforming algorithms arising from both the steering vector mismatch of the desired signal and the covariance matrix mismatch, a new robust adaptive beamforming algorithm is proposed. Firstly, the signal-to-noise ratio (SNR) of the desired signal is estimated. Then, the projection matrix is constructed with the estimated SNR to further predict the steering vectors of the desired signal and those of the interferences. Next, the steering vectors of the desired signal and the interferences are corrected by using the uncertainty-set optimization method. Finally, the signal power is estimated and the interference-plus-noise covariance matrix is reconstructed. The simulation results show that, compared with the beamforming algorithm that requires covariance matrix reconstruction, the proposed algorithm achieves a better output signal to interference and noise ratio (SINR) performance. When SNR is 10.0 dB and signal direction of arrival (DOA) mismatch occurs, the output SINR gain is about 1.9 dB; when wavefront distortion arises, the output SINR gain is about 1.5 dB; when coherent local scattering happens, the output SINR gain is about 1.6 dB.

     

  • [1]
    卢丹. 稳健的全球卫星导航系统抗干扰技术研究[D]. 西安: 西安电子科技大学,2013.
    [2]
    朱亮. 北斗卫星导航系统干扰识别与测向技术的研究与实现[D]. 北京: 北京交通大学,2019.
    [3]
    刘江波. 稳健的收/发波束形成方法研究[D]. 成都: 电子科技大学,2018.
    [4]
    黄磊. 非理想条件下的自适应波束形成算法研究[D]. 合肥: 中国科学技术大学,2016.
    [5]
    COX H, ZESKIND R, OWEN M. Robust adaptive beamforming[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(10): 1365-1376. doi: 10.1109/TASSP.1987.1165054
    [6]
    FELDMAN D D, GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867-876. doi: 10.1109/78.285650
    [7]
    LI J, STOICA P, WANG Z. Doubly constrained robust Capon beamformer[C]//The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers. Pacific Grove: IEEE, 2004: 1335-1339.
    [8]
    JIAN L, STOICA P, WANG Z S. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1715. doi: 10.1109/TSP.2003.812831
    [9]
    GU Y J, LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881-3885. doi: 10.1109/TSP.2012.2194289
    [10]
    HUANG L, ZHANG J, XU X, et al. Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1643-1650. doi: 10.1109/TSP.2015.2396002
    [11]
    HUANG Y W, ZHOU M K, VOROBYOV S A. New designs on MVDR robust adaptive beamforming based on optimal steering vector estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3624-3638. doi: 10.1109/TSP.2019.2918997
    [12]
    毛晓军. 高性能阵列天线稳健自适应波束形成技术研究[D]. 哈尔滨: 哈尔滨工程大学,2017.
    [13]
    SHEN F, CHEN F F, SONG J Y. Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction[J]. IEEE Communications Letters, 2015, 19(9): 1636-1639. doi: 10.1109/LCOMM.2015.2455503
    [14]
    毛英. 北斗空时自适应抗干扰子空间投影方法研究[D]. 哈尔滨: 哈尔滨工程大学,2017.
    [15]
    ZHENG Z, ZHENG Y, WANG W Q, et al. Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8495-8503. doi: 10.1109/TVT.2018.2849646
    [16]
    ZHOU C W, GU Y J, HE S B, et al. A robust and efficient algorithm for coprime array adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1099-1112. doi: 10.1109/TVT.2017.2704610
    [17]
    鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社,2016:82-85.
    [18]
    KHABBAZIBASMENJ A, VOROBYOV S A, HASSANIEN A. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information[J]. IEEE Transactions on Signal Processing, 2012, 60(6): 2974-2987. doi: 10.1109/TSP.2012.2189389
  • Cited by

    Periodical cited type(6)

    1. 张晓华,蔡巍,武宇平,杜维柱,薛文祥,卢毅. 基于海量点云数据的输电线路三维建模研究. 信息技术. 2023(09): 143-147 .
    2. 张秋敏,曹治. 基于3D模型的景观建筑物全景纹理映射仿真. 计算机仿真. 2023(09): 197-201 .
    3. 荀欢欢,李鹏. 虚拟分割下复杂建筑立面纹理3D建模方法. 计算机仿真. 2023(10): 254-257+352 .
    4. 王威. 基于数字技术的三维动画图像纹理实时渲染系统设计. 现代电子技术. 2022(04): 78-82 .
    5. 李相,荀平,刘耀群. 基于三维GIS的现代化营房快速建模方法. 自动化技术与应用. 2022(10): 48-51+56 .
    6. 吴一非,杜尚广. 分散式布局景观建筑虚拟VR重构方法仿真. 计算机仿真. 2022(11): 240-243+397 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(518) PDF downloads(32) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return